K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2-4x+3-x^2=0\)

\(\Leftrightarrow-4x=-3\)

hay \(x=\dfrac{3}{4}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)

18 tháng 9 2021

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x^2-2x\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)

18 tháng 9 2021

Cho mình sửa lại nhé:

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

7 tháng 6 2021

`(x+3)(x^2-5x+8)=(x+3).x^2`

`<=>(x+3)(x^2-5x+8-x^2)=0`

`<=>(x+3)(8-5x)=0`

`<=>` \(\left[ \begin{array}{l}x+3=0\\8-5x=0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac85\\x=-3\end{array} \right.\) 

Vậy `S={-3,8/5}`

7 tháng 6 2021

`(x+3)(x^2-5x+8)=(x+3).x^2`

`<=>(x+3)(x^2-5x+8-x^2)=0`

`<=>(x+3)(-5x+8)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\-5x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{8}{5}\end{matrix}\right.\)

Vậy `S={-3;8/5}`.

 

a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)

\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)

\(=\left(x^2+9x+19\right)^2\)

24 tháng 8 2021

b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left(x-y-2\right)^2\)

d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)

\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)

\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)

\(\Leftrightarrow4-x=0\)

hay x=4

Vậy: S={4}

21 tháng 3 2021

$⇔x^2-2x+1+x-x^2+3=0$

$⇔-x=-4$

$⇔x=4$

Vậy phương trình đã cho có tập nghiệm S={4}

Sửa đề: \(\dfrac{x+2}{2014}+\dfrac{x+1}{2015}=\dfrac{x+2001}{15}+\dfrac{x+2014}{2}\)
Ta có: \(\dfrac{x+2}{2014}+\dfrac{x+1}{2015}=\dfrac{x+2001}{15}+\dfrac{x+2014}{2}\)

\(\Leftrightarrow\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}+1=\dfrac{x+2001}{15}+1+\dfrac{x+2014}{2}+1\)

\(\Leftrightarrow\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}=\dfrac{x+2016}{15}+\dfrac{x+2016}{2}\)

\(\Leftrightarrow\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}-\dfrac{x+2016}{15}-\dfrac{x+2016}{2}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{15}-\dfrac{1}{2}\right)=0\)

mà \(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{15}-\dfrac{1}{2}\ne0\)

nên x+2016=0

hay x=-2016

Vậy: S={-2016}

\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)

\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)

\(\Leftrightarrow2x^2+5=0\)(vô lý)

5 tháng 3 2022

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)

\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)

Vậy pt vô nghiệm