Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)
b) Bạn có thể viết kiểu latex được không ạ ?
`4(x-6)-x^2 (2+3x)+x(5x-4)+3x^2 (x-1)`
`=4x-24-2x^2 -3x^3 +5x^2-4x+3x^3-3x^2`
`=-24`
\(4\left(x-6\right)-2x\left(2+3x\right)+x\left(5x-4\right)+3x2\left(x-1\right)\\ =4x-24-4x-6x^2+5x^2-4x+6x^2+6x\\ =2x+5x^2-24\)
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}
\(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
\(\Rightarrow3x^2-3x+2x-2-\left(3x+3\right)\left(x-2\right)=4\)
\(\Rightarrow3x^2-3x+2x-2-\left(3x^2-6x+3x-6\right)=4\)
\(\Rightarrow3x^2-3x+2x-2-3x^2+6x-3x+6=4\)
\(\Rightarrow2x+4=4\)
\(\Rightarrow x=0\)
tui không biết mong bà thông cảm
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)=27\)
\(\Leftrightarrow x^3+27-x\left(x^2-1\right)=27\)
\(\Leftrightarrow x^3+27-x^3+x=27\)
\(\Leftrightarrow27+x=27\)
\(\Leftrightarrow x=0\)
#H