K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

chữ viết nhỏ quá bn

17 tháng 5 2020

E hèm !

Vt chữ nhỏ cx là nghệ thuật đếy bạn ơi! Bài mình lm j cs nhiều chữ lắm đâu ạ ...chỉ có "vậy". "mà..."vs cả chữ x thôi mờ :<

16 tháng 9 2017

a) (x+2)(x-3) <0 \(\Leftrightarrow\)x+2>0 , x-3 <0 hoặc x+2<0 , x-3 >0 ( loại)

\(\Leftrightarrow\)-2<x<3

b) \(\left(x-1\right)\left(x-2\right)\ge0\)

\(\Leftrightarrow\)x-1\(\ge\)0 , x-2 \(\ge\)0 hoặc x-1 \(\le0\), x-2 \(\le0\)

\(\Leftrightarrow\)\(1\le x\)hoặc \(x\ge2\)

c) ta có \(x^2+1>0\)\(\Rightarrow\)x+2 >0 \(\Leftrightarrow\)x>-2

4: \(\left|x^3-64\right|+\left|15-4y\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-64=0\\15-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{15}{4}\end{matrix}\right.\)

6: |7x-11|>5

=>7x-11>5 hoặc 7x-11<-5

=>7x>16 hoặc 7x<6

=>x>16/7 hoặc x<6/7

8: |2x+12|<4

=>2x+12>-4 và 2x+12<4

=>2x>-16 và 2x<-8

=>-8<x<-4

1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v

29 tháng 7 2016

a) \(x\left(x-2\right)\ge0\)

\(\Rightarrow x\ge0\)hoặc \(x-2\ge0\)

\(\Rightarrow x\ge0\)hoặc \(x\ge2\)

\(S=\left\{xlx\ge0\right\}\)

b)\(x\left(x-2\right)\le0\)

\(\Rightarrow x\le0\)hoặc \(x-2\le0\)

\(\Rightarrow x\le0\)hoặc \(x\le2\)

\(S=\left\{xlx\le2\right\}\)