Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy.......
|x-1| + |4-x| = 3
Áp dụng bất đẳng thức ta có:
|x-1| + |4-x | \(\ge\)|x-1+ 4-x| = 3
Dấu = xảy ra khi và chỉ khi : (x-1)(4-x) \(\ge\)0
\(\Rightarrow\) 1\(\le\)x \(\le\)4
Vậy 1\(\le\)x \(\le\)4 là giá trị cần tìm
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)
x + 5/2 . x - 3/2 = 9/4
<=> x( 1+ 5/2 ) - 3/2 = 9/4
<=> x . 7/2 = 9/4 + 3/2
<=> x .7/2 = 15/4
<=> x = 15/4 : 7/2
<=> x = 15/14
TA CÓ:
X + 5/2 . X - 3/2 = 9/4
X + 5/2 .X = 9/4 +3/2 = 15/4
(X . 1) + (5/2 . X) = 15/4
X . (1 + 5/2) =15/4
X . 7/2 = 15/4
X = (15/4) / (7/2)
X = 15/14
DỄ ÒM MÀ
BẠN HỌC TRỪNG NÀO MÀ MAI NỘP VẬY
\(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{1}{6}\end{matrix}\right.\)
Vậy: ...............
* Trả lời:
\(\left(5x-1\right).\left(2x-\dfrac{1}{3}\right)=0\)
\(\Rightarrow5x-1=0\) hoặc \(2x-\dfrac{1}{3}=0\)
TH1: \(5x-1=0\)
\(\Rightarrow5x=1\)
\(\Rightarrow x=\dfrac{1}{5}\)
TH2: \(2x-\dfrac{1}{3}=0\)
\(\Rightarrow2x=\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{6}\)
Vậy nghiệm của đa thức \(\left(5x-1\right).\left(2x-\dfrac{1}{3}\right)\) là \(x=\dfrac{1}{6};x=\dfrac{1}{5}\)
a, 2.(4x-3)-3(x+5)+4(x-10)=5(x+2)
2.4x-2.3-3.x+3.5+4x-4.10=5x+5.2
8x-6-3x+15+4x-40=5x-10
8x-3x+4x-5x-6-15-40-10=0
4x-71=0
4x=71
x=71:4
x=71/4
a: =>x+3/4=1/2 hoặc x+3/4=-1/2
=>x=-1/4 hoặc x=-5/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x-2-x\right)\left(x-2+x\right)=0\end{matrix}\right.\Leftrightarrow x=1\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x+2-x\right)\left(x+2+x\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
\(\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)x - 1 = 0 hoặc x + 2 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = -2 hoặc x = 3
Vậy \(x\in\left\{-2;1;3\right\}\)