Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
\(a,x-\frac{5}{6}:1\frac{1}{6}=0,125\)
\(x-\frac{5}{6}:\frac{7}{6}=\frac{1}{8}\)
\(x-\frac{5}{7}=\frac{1}{8}\)
\(x=\frac{1}{8}+\frac{5}{7}\) \(x=\frac{47}{56}\)
\(b,\left(1-\frac{2}{10}+x+\frac{1}{5}\right):\left(1\frac{1}{3}-\frac{2}{3}+3\frac{1}{3}\right)-1=1\frac{1}{2}\)
\(\left(1-\frac{1}{5}+x+\frac{1}{5}\right):\left(\frac{4}{3}-\frac{2}{3}+\frac{10}{3}\right)-1=\frac{3}{2}\)
\(\left(\frac{4}{5}+x+\frac{1}{5}\right):4=\frac{3}{2}+1\)
\(\left(1+x\right):4=\frac{5}{2}\)
\(1+x=\frac{5}{2}.4\)
\(1+x=10\)
\(x=10-1\)
\(x=9\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`13/50 + 9% + 41/100 + 0,24`
`= 0,26 + 0,09 + 0,41 + 0,24`
`= (0,26 + 0,24) + (0,09 + 0,41)`
`= 0,5 + 0,5`
`= 1`
`b)`
`2018 \times 2020 - 1/2017 + 2018 \times 2019`
`= 2018 \times (2020 + 2019) - 1/2017`
`= 2018 \times 4039 - 1/2017`
`= 8150702`
`c)`
`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)
`=`\(1-\dfrac{1}{7}\)
`= 6/7`
\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)
1.
7/15:(1/2-9/10xX)-1/6=13/6
=>7/15:(1/2-9/10xX)=13/6+1/6
=>7/16:(1/2-9/10xX)=7/3
=>1/2-9/10xX=7/16:7/3
=>1/2-9/10xX=3/16
=>9/10xX=1/2-3/16
=>9/10xX=5/16
=>X=5/16:9/10
=>X=25/72
Ta có:
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
\(\Rightarrow A=1-\frac{1}{2^9}=1-\frac{1}{512}=\frac{511}{512}\)
Vậy giá trị biểu thức là \(\frac{511}{512}\)
b) Ta có:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}+\frac{1}{110}=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Vậy giá trị biểu thức là \(\frac{10}{11}\)
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10
thay x = a thôi đấy
chẳng động não gì cả
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10
thay x = a thôi đấy
chẳng động não gì cả