Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
a) Vì \(x^2\ge0;\left(y-\frac{1}{10}\right)^2\ge0\)
Mà theo đề bài: \(x^2+\left(y-\frac{1}{10}\right)^2=0\)
=> \(\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}\) => \(\begin{cases}x=0\\y-\frac{1}{10}=0\end{cases}\) => \(\begin{cases}x=0\\y=\frac{1}{10}\end{cases}\)
Vậy \(x=0;y=\frac{1}{10}\)
b) Vì \(\left(\frac{1}{2}x-5\right)^{26}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{26}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{26}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)
Vậy \(x=10;y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)
a, \(x:y:z=2:3:4\&x+y+z=365\)
\(x:y:z=2:3:4\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{365}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{365}{9}\\\dfrac{y}{3}=\dfrac{365}{9}\\\dfrac{z}{4}=\dfrac{365}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{730}{9}\\y=\dfrac{365}{3}\\z=\dfrac{1460}{9}\end{matrix}\right.\)
b:\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\\dfrac{7}{2}+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)
c: =>1/2x-5=0 và y^2-1/4=0
=>\(\left\{{}\begin{matrix}x=10\\y\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\end{matrix}\right.\)
d: =>x=0 và y-1/10=0
=>x=0 và y=1/10
Nhầm :
Dấu "=" xảy ra \(\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
(x+1)2+(y-2)10=0
Vì \(\left\{{}\begin{matrix}\left(x+1\right)^2≥0∀x\\\left(y-2\right)^{10}≥0∀y\end{matrix}\right.\)\(\Rightarrow\left(x+1\right)^2+\ge\left(y-2\right)^{10}0∀x,y\)
Dáu "=" xảy ra <=> \(\left[{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)