K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

lam thế  nao vậy?

30 tháng 3 2020

Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)

<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

30 tháng 3 2020

Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha

DD
30 tháng 5 2021

Ta có: \(40=5.8,\left(5,8\right)=1\)nên ta sẽ chứng minh \(\left(x^2-y^2\right)⋮8\)và \(\left(x^2-y^2\right)⋮5\).

Giả thiết tương đương với: \(3x^2-2y^2=1\).

- Chứng minh \(\left(x^2-y^2\right)⋮8\).

Dễ thấy \(x\)lẻ nên \(x=2k+1\Rightarrow x^2=4k^2+4k+1=4k\left(k+1\right)+1\equiv1\left(mod8\right)\).

Do đó \(3x^2\equiv3\left(mod8\right)\Leftrightarrow2y^2+1\equiv3\left(mod8\right)\Leftrightarrow y^2\equiv1\left(mod8\right)\).

\(\Rightarrow x^2-y^2⋮8\).

- Chứng minh \(\left(x^2-y^2\right)⋮5\).

Số chính phương khi chia cho \(5\)dư \(0,1,4\)do đó: \(3x^2\equiv0,3,2\left(mod5\right)\)\(2y^2\equiv0,2,3\left(mod5\right)\).

Để \(3x^2-2y^2=1\equiv1\left(mod5\right)\)thì \(3x^2\equiv3\left(mod5\right),2y^2\equiv2\left(mod5\right)\)

 khi đó \(x^2\equiv1\left(mod5\right),y^2\equiv1\left(mod5\right)\Rightarrow x^2-y^2⋮5\).

Từ đây ta có đpcm. 

30 tháng 5 2021

anh cho em kết bạn với anh để có thể hỏi cho dễ được không anh,trước giờ anh giúp em nhiều qúa mà em cũng không biết cảm ơn thế nào