Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với \(x\ge0;x\ne1\)
\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(P=\dfrac{x\sqrt{x}-x-\sqrt{x}-2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)^2}{2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)\left(x-1\right)}{2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)\left(1-x^2\right)}{2\left(x+\sqrt{x}+1\right)}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)
Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x-2\sqrt{x}+1}{x-1}\)
\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)
\(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}+1}{x-1}\)
\(A=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)
\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)
\(=-13\sqrt{3}+3\sqrt{3}\)
\(=-10\sqrt{3}\)
b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)
\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)
\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)
\(=2\sqrt{3}-3\sqrt{2}-1\)
c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)
\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
Chào em, em có thể kam khảo tại link:
Câu hỏi của Lê Thu Hà - Toán lớp 9 - Học toán với OnlineMath
Nếu link bị chặn em copy và dán tại:
https://olm.vn/hoi-dap/question/1261852.html
Câu hỏi của Lê Thu Hà - Toán lớp 9 - Học toán với OnlineMath
a) Rút gọn E
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-\sqrt{x}}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}-\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
Vậy \(E=\frac{x}{\sqrt{x}-1}\)
\(1,P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)
\(=\frac{x-\sqrt{x}}{x\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
nhân đa với đa đấy bạn
1: Ta có: \(Q=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\frac{x-2\sqrt{x}+x\sqrt{x}-x\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\frac{x-2\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x-1}{x+\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\cdot\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
2: Ta có: \(\frac{1}{Q}=4\sqrt{x}-4\)
\(\Leftrightarrow Q=\frac{1}{4\sqrt{x}-4}\)
\(\Leftrightarrow\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{4\sqrt{x}-4}\)
\(\Leftrightarrow\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(4\sqrt{x}-4\right)\)
\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1=4x\sqrt{x}-4\)
\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1-4x\sqrt{x}+4=0\)
\(\Leftrightarrow x-3x\sqrt{x}-\sqrt{x}+3=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(x\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left[\sqrt{x}-3\left(x+\sqrt{x}+1\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-3x-3\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(-3x-2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)=0\)(vì \(-3x-2\sqrt{x}-3\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\sqrt{x}=1\)
hay x=1(không thỏa mãn ĐKXĐ)
Vậy: Không có giá trị nào của x thỏa mãn \(\frac{1}{Q}=4\sqrt{x}-4\)