Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)
\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)
\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)
Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)
Hay là:
\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)
Việc còn lại là của mọi người.
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Dự đoán dấu bằng: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
\(gt\Leftrightarrow5x^2+2yz.x+4y^2+3z^2-60\text{ (1)}\)
(1) là một pt bậc hai ẩn x
\(\Delta'=y^2z^2-5\left(4y^2+3z^2-60\right)=\left(15-y^2\right)\left(20-z^2\right)\)
Ta có: x, y, z > 0 nên từ giả thiết suy ra:
\(\hept{\begin{cases}60>4y^2\\60>3z^2\\4y^2+3z^2-60< 0\end{cases}}\)
nên (1) có: \(\hept{\begin{cases}\Delta'>0\\a.c=5\left(4y^2+3z^2-60\right)< 0\end{cases}}\)
Suy ra (1) có 2 nghiệm trái dấu. Do x > 0 nên ta chọn nghiệm dương, hay
\(x=\frac{-yz+\sqrt{15-y^2}.\sqrt{20-z^2}}{5}\)
Áp dụng bđt Côsi: \(x\le\frac{-yz+\frac{15-y^2+20-z^2}{2}}{5}=\frac{35-\left(y^2+z^2+2yz\right)}{10}=\frac{35}{10}-\frac{\left(y+z\right)^2}{10}\)
\(B=x+y+z\le-\frac{\left(y+z\right)^2}{10}+\left(y+z\right)+\frac{35}{10}\)
\(B\le-\frac{1}{10}\left[\left(y+z\right)^2-10\left(y+z\right)+5^2\right]+\frac{25}{10}+\frac{35}{10}\)
\(=-\frac{1}{10}\left(y+z-5\right)^2+6\le6\)
Với \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)thì giả thiết đúng và B = 6.
Vậy Max B = 6.
<=>4(x+y)=5
ta có:
\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)
\(\Rightarrow S\ge5\)
Vậy Min S=5 khi x=1;y=1/4
\(1\le5\left(x+y\right)+4\left(x+y\right)^2+9xy\le5\left(x+y\right)+4\left(x+y\right)^2+\frac{9}{4}\left(x+y\right)^2\)
\(\Leftrightarrow25\left(x+y\right)^2+20\left(x+y\right)-4\ge0\)
\(\Rightarrow x+y\ge\frac{2\sqrt{2}-2}{5}\)
\(P=17\left(x+y\right)^2-18xy\ge17\left(x+y\right)^2-\frac{9}{2}\left(x+y\right)^2=\frac{25}{2}\left(x+y\right)^2\ge\frac{25}{2}\left(\frac{2\sqrt{2}-2}{5}\right)^2=6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)