Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d
Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)d \(\Rightarrow\)2 \(⋮\)d \(\Rightarrow\)d \(\in\){ 1 ; 2 }
d là ước của số lẻ 2n + 1 nên d \(\ne\)2
Vậy d = 1
Do đó ( 2n + 1 ; 6n + 5 ) = 1
Gọi ƯCLN 2 số trên là a
2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)
3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)
tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a
=> 1 chia hết cho a
=>a=1
vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau
Gọi a là ước của n+1 và 2n+3
2n+3 - n+1 chia hết cho a
= 2n+3 - 2(n+1) chia hết cho a
= 2n+3 - 2n+2 chia hết cho a
= 1 chia hết cho a
=> n+1 và 2n+3 là hai số nguyên tố cùng nhau