Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:32n=(32)n=9n
(-3)2n+1=[(-3)2]n+1=9n+1
Mà 9n+1<9n nên 32n<(-3)2n+1
Vậy:32n<(-3)2n+1
Bài 2:
a, Gọi \(d=ƯCLN\left(3n+1,3n+10\right)\)
\(\Rightarrow3n+1⋮d;3n+10⋮d\\ \Rightarrow3n+10-3n-1⋮d\\ \Rightarrow9⋮d\)
Mà d lớn nhất nên \(d=9\)
Vậy ...
b, Gọi \(d=ƯCLN\left(2n+1,n+3\right)\)
\(\Rightarrow2n+1⋮d;n+3⋮d\\ \Rightarrow2n+1-2n-6⋮d\\ \Rightarrow-5⋮d\)
Mà d lớn nhất nên \(d=5\)
Vậy ...
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Lời giải:
a. Gọi d là ƯCLN của $3n+1, 3n+10$
\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)
\(\Rightarrow 9\vdots d\)
\(\Rightarrow d=\left\{1;3;9\right\}\)
Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$
$\Rightarrow d=1$
Vậy ƯCLN $(3n+1,3n+10)=1$
b.
Gọi $d$ là ƯCLN $(2n+1,n+3)$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)
\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)
\(\Rightarrow d\in\left\{1;5\right\}\)
3n + 4 = 3n + 9 - 5 = 3(n + 3) - 5
Có \(3\left(n+3\right)⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ_{\left(5\right)}\)
\(\Rightarrow n+3\in\left\{1;5\right\}\)
\(\left[{}\begin{matrix}n+3=1\\n+3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-2\\n=2\end{matrix}\right.\)
Vậy nếu n = -2 hoặc n = 2 thì \(\dfrac{3n+4}{n+3}\) là số tự nhiên
>>>>>>>>>>>>>>>>>>>>>>>>>