Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng xét 3 TH
TH1: n chia hết 3 suy ra n(n+1)(2n+1) chia hết cho 3
TH2 : n : 3 dư 1 suy ra n =3k+1 suy ra 2n+1=6k+2+1 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3
TH3 : n : 3 dư 2 suy ra n =3k+2 suy ra n+1=3k+3 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3
n2 chia hết cho 3 <=> n . n chia hết cho 3
1 thừa số n chia hết cho 3 thì số kia cũng chia hết cho 3.
=> giải thích ở trên rồi còn cái mệnh đề là đúng
Ta có nhận xét: Mọi số chính phương khi chia cho 3 chỉ dư 0 hoặc 1. Thực vậy nếu \(A=x^2\) là số chính phương. Nếu x chia hết cho 3 thì A chia hết cho 3. Nếu x=3k+1 thì \(A=\left(3k+1\right)^2=9k^2+6k+1=3k\left(3k+2\right)+1\) chia 3 dư 1.
Nếu x=3k+2 thì \(A=\left(3k+2\right)^2=9k^2+12k+4=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1.
Vậy nhận xét đúng.
Quay lại bài toán, nếu \(m^2+n^2\vdots3\) thì \(m,n\) chia hết cho 3. Thực vậy giả sử \(m\) không chia hết cho 3, suy ra \(n\) cũng không chia hết cho 3. Suy ra \(m^2,n^2\) chia 3 dư 1. Do đó \(m^2+n^2\) chia 3 dư 2, mâu thuẫn.
Suy ra \(m\) chia hết cho 3, do đó \(n\) không chia hết cho 3.
P: 42 không chia hết cho 5
Q: 42 cũng không chia hết cho 10
Nên mệnh đề đó là sai
42 ko chia hết cho 5
42 ko chia hết cho 10
nên mệnh đề này sai.
Tk cho mình nha ae!!!!!!!!!!!!! Ai tk mình thì mình tk lại.
Ta có :
\(n^2\) chia hết cho p nghĩa là \(n.n\) chia hết cho p do đó n chia hết cho p
Vậy mệnh đề đẻo lại là n chia hết cho p thì n2 chia hết cho p là đúng
Đinh Đức Tài ns đúng