K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc

Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)

\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)

\(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133

Mà 11n.133 cũng chia hết cho 133

=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)

b,\(5^{n+2}+26.5^n+8^{2n+1}\)

\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)

\(=59.5^n+8.\left(64^n-5^n\right)\)

\(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59

Mà 59.5n cũng chia hết cho 59

=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)

8 tháng 10 2019

a,sai nha bn

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

6 tháng 8 2016

Câu 1: 

(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n... 
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6. 
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) 

Câu 2: Gọi biểu thức trên là a ta có:

 A=mn(m²-n²) 
   = mn(m² - 1 - n² + 1) 
   = mn [(m-1)(m+1) - (n-1)(n+1)] 
   = n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3  (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3    (tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

Câu 3:

 n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

Vậy n(n+1)(2n+1) chia hết cho 6

Câu 4: Gọi biểu thức trên là B ta có:

* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1) 
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5 
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5 
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5  và n^2(n^2 - 1).5 cũng chia hết cho 5 
=> B chia hết cho 5 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3 
=> B chia hết cho 3 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1) 
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4 
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4 
=> B chia hết cho 4 

Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60

Câu 5: Gọi biểu thức trên là C ta có:

Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2) 
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2. 
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2. 
Vậy C chia hết cho 2 
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3. 
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3 
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3. 
Vậy C chia hết cho 3. 
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5 
Nếu k0 +)m,n đồng dư mod 5 =>m-n  chia hết cho 5 
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4) 
Các trường hợp (1,4),(2,3) =>m+n  chia hết cho5 
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại) 
Vậy C chia hết cho 5. 
Từ kết quả trên => C chia hết cho 30( đpcm). 

25 tháng 9 2021

\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)

Ta có \(64:59R5\Rightarrow64^n:59R5\)

Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)

Vậy \(A⋮59\)

(\(R\) là dư)

\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

 

cho hỏi là x=-2 thì x đâu còn \(\ge\) 0 nữa

11 tháng 9 2018

Giúp mình với gianroigianroigianroigianroi

23 tháng 9 2018

ếu giúp bạn tick nha

15 tháng 8 2018

a) Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

17 tháng 6 2015

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

trieu dang làm đúng rùi

4 tháng 10 2021

1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM

3.

\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)

Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6

Mà 7 ko chia hết cho 6 nên A không chia hết cho 6

\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)

Như câu a thì B chia hết cho 6 hay B chia hết cho 3

Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)

\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)

Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2

\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)

Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24

\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24

4 tháng 10 2021

thế câu 2 đâu anh

25 tháng 10 2021

a: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=4n\left(2n+2\right)⋮8\)