K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ

Khi đó \(2^n-1=\left(2k+1\right)^2\)  \(\left(k\inℕ^∗\right)\)

\(\Leftrightarrow2^n-1=4k^2+4k+1\)

\(\Leftrightarrow2^n=4k^2+4k+2\) 

Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4

Mà n>1 nên 2n chia hết cho 4

=> vô lý =>  điều g/s sai

=> 2n - 1 không là 1 SCP

29 tháng 3 2022

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

2 tháng 5 2020

Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9

Giả sử n2+n+1 chia hết cho 9

<=> n2+n+1=9k (k thuộc N)

<=> n2+n+1-9k=0 (1)

\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)

Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên

Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương

14 tháng 8 2018

Ta thấy: \(n^2-n+2=n^2-\frac{1}{2}.2.n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì (n-1/2)^2 là số chính phương mà 7/4 ko là số chính phương nên x^2 - n + 2 không phải là số chính phương với mọi n >= 2

Giả sử n=1

1x2x3x4=24

mà 24 ko là số chính phương

=>A = n(n+1)(n+2)(n+3) ko là số chính phương với mọi số m khác 0

mình là lớp 6 đó

9 tháng 12 2017

Đặt \(n^3-n+2=a^2\)

<=>  \(n\left(n-1\right)\left(n+1\right)+2=a^2\)

Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)

=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)

Mà   1 số chính phương chia 3 dư 0 hoặc 1

=>  \(n^3-n+2\) không thể là số chính phương

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

25 tháng 8 2017
  

Ta có :

A=n(n+1)(n+2)(n+3)

=n(n+3).(n+1)(n+2)

=(n2+3n)(n2+3n+2)

=(n2+3n)2+2(n2+3n)A>(n2+3n)2

=[(n2+3n)2+2(n2+3n)+1]1

=(n2+3n+1)21

Có :

(n2+3n+1)2>A>(n2+3n)2 nên A không phải số chính phương ( Vì A nằm giữa hai số chính phương )

  
25 tháng 8 2017

=n(n+3).(n+1)(n+2)

=(n2+3n)(n2+3n+2)

=(n2+3n)2+2(n2+3n)A>(n2+3n)2

=[(n2+3n)2+2(n2+3n)+1]1

=(n2+3n+1)21

Có :