K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(n^4+64=n^4+16n^2+64-16n^2\)

\(=\left(n^2+8\right)^2-\left(4n\right)^2\)

\(=\left(n^2-4n+8\right)\left(n^2+4n+8\right)\)

14 tháng 9 2020

Có nguyên tố khối à ? Hay bạn viết ngược vậy ?

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

12 tháng 7 2016

Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6

Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.

22 tháng 6 2017

60 = 3.4.5 

Ta cần c/m xyz chia hết cho 3; 4 và 5. 

Xét x² + y² = z² 
 

* Giả sử cả x; y và z đều không chia hết cho 3. 

Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1. 

=> x² + y² ≡ 1 + 1 = 2 ( mod 3 ) 

Vô lí vì z² ≡ 1 ( mod 3 ) 

Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠) 

* Giả sử cả x; y và z không chia hết cho 4. 

Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3. 

*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1. 

=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại } 

*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4 

*TH 3 : Có 1 số chẵn và 2 số lẻ. 

......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )} 

......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau : 


........z...............x...........z-... 

....4m+1.......4n+1.........4(m-n)....... 

....4m+3.......4n+1.......4(m-n)+2....... 

Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn. 
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣) 

* Giả sử cả x; y và z không chia hết cho 5. 
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1. 
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại } 
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại } 
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại } 

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦) 
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

22 tháng 6 2017

Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi

9 tháng 8 2018

giúp mình với