Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(mx^3-x^2+2x-8m=0\)
\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)
\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)
- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1
<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .
- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)
\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)
- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)
- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)
- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )
Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)
- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)
Vậy ...
b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)
\(=m^2-4m+4-m^2+m+3m-3=1>0\)
Nên phương trình có 2 nghiệm phân biệt .
Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)
- Để \(x_1+x_2+x_1x_2< 1\)
\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)
\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)
- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)
Cho f(m) = 0 => m = 3
m-1 = 0 => m = 1
- Lập bảng xét dầu :
m.............................1..........................................3...................................
2m-6............-..........|......................-.....................0...................+.................
m-1..............-............0...................+.....................|....................+.................
f(m).............+...........||..................-........................0................+....................
- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)
\(\Leftrightarrow1< m< 3\)
Vậy ...
a) Với m = 1 phương trình trở thành:
x 2 + 4x + 4 = 0 ⇔ (x + 2 ) 2 = 0 ⇔ x = -2
Vậy x = -2
b) Ta có: Δ' = m 2 - 5m + 4
Phương trình có hai nghiệm phân biệt
⇔ Δ' > 0 ⇔ m 2 - 5m + 4 > 0
Do x1 < x2 < 1
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
Phương trình bậc hai a x 2 + b x + c = 0 có hai nghiệm x 1 và x 2 mà x 1 + x 2 = 4 khi
Δ ≥ 0 và (-b)/a = 4.
Với m = 1 thì (-b)/a = -2(m + 1) = -4 không đúng.
Với m = -3 thì (-b)/a = 4 đúng, nhưng
Δ’ = ( m + 1 ) 2 – 2 ( m + 6 ) = m 2 – 11 < 0, sai
Với m = -2 thì (-b)/a = 2, sai.
Vậy cả 3 phương án A, B, C đều sai và đáp án là D.
Đáp án: D
1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)
\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)
\(\Rightarrow-1< m\le2\)
Câu 1b, 2, 3 làm tương tự
Câu 4:
\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)
\(\Rightarrow m>-1\)
Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6
= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8
⇒ A = m - 2 2 - 12 ≥ 12
Suy ra m i n A = - 12 ⇔ m = 2
m = 2 thỏa mãn (*)
Vậy với m = 2 thì biểu thức A đạt giá trị nhỏ nhất.
Đáp án cần chọn là: A
a) Xét: x2 - 4mx + 9.(m – 1)2 = 0 (1)
Δ’ = (2.m)2 – 9.(m – 1)2 = 4m2 – 9.(m2 – 2m + 1) = -5m2 + 18m – 9
Phương trình (1) có nghiệm ⇔ Δ’ ≥ 0
⇔ -5m2 + 18m – 9 ≥ 0
⇔ 5m2 - 18m + 9 ≤ 0
⇔ (5m – 3)(m – 3) ≤ 0
⇔ 3/5 ≤ m ≤ 3.
b) + x1 ; x2 là hai nghiệm của (1) nên theo định lý Vi-et ta có:
+ Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m.
Thử lại:
+ m = 1, (1) trở thành x2 – 4x = 0 có hai nghiệm x = 0; x = 4 có hiệu bằng 4
+ m = 13/5, (1) trở thành có hai nghiệm x = 7,2 và x = 3,2 có hiệu bằng 4.
Vậy m = 1 hoặc m = 13/5.
Chọn B.
Ta có: Δ = (m - 2 ) 2 - (m - 1)(m - 3) = ( m 2 - 4m + 4 ) - ( m 2 - 4m + 3) = 1 > 0
Phương trình có hai nghiệm phân biệt x1, x2.
Áp dụng hệ thức Vi-ét ta có:
Ta có: