Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a;b;c>0\Rightarrow2ab\le\frac{\left(a+b\right)^2}{2}\) thay vào \(\sqrt{a^2+4ab+b^2}\)ta có:
\(\sqrt{a^2+4ab+b^2}=\sqrt{\left(a+b\right)^2+2ab}\)
\(\le\sqrt{\left(a+b\right)^2+\frac{\left(a+b\right)^2}{2}}=\sqrt{\frac{3\left(a+b\right)^2}{2}}=\left(a+b\right).\sqrt{\frac{3}{2}}\)
Tương tự: \(\sqrt{b^2+4bc+c^2}\le\sqrt{\frac{3}{2}}.\left(b+c\right)\)
\(\sqrt{c^2+4ca+a^2}\le\sqrt{\frac{3}{2}}.\left(c+a\right)\)
\(\Rightarrow P\le\sqrt{\frac{3}{2}}.\left(a+b\right)+\sqrt{\frac{3}{2}}.\left(b+c\right)+\sqrt{\frac{3}{2}}.\left(c+a\right)\)
\(\le\sqrt{\frac{3}{2}}.\left(2a+2b+2c\right)=\sqrt{\frac{3}{2}}.6=\sqrt{216}=6\sqrt{6}\)Vì a+b+c=6
Dấu = xảy ra khi a=b=c=2
Vây ......
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{a+1}=\frac{a}{a+b+a+c}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b}{b+1}\le\frac{1}{4}\left(\frac{b}{b+c}+\frac{b}{a+b}\right);\frac{c}{c+1}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(Q\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{1}{4}\)
Khi \(a=b=c=\frac{1}{3}\)
\(C=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{ab}+\dfrac{1}{ab}\right)+3\left(ab+\dfrac{1}{16ab}\right)+\dfrac{29}{16ab}\)
\(C\ge\dfrac{16}{a^2+b^2+2ab}+6\sqrt{\dfrac{ab}{16ab}}+\dfrac{29}{4\left(a+b\right)^2}\ge\dfrac{16}{1}+\dfrac{6}{4}+\dfrac{29}{4}=\dfrac{99}{4}\)
\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)
\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)
\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)