K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2019

\(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2bc+2ac\right)}\)\(=\sqrt{8\left(a+b\right)\left(a+2c\right)}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\)

Áp dụng BĐT AM-GM cho các số không âm:

\(\sqrt{8a^2+56}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\le\frac{4\left(a+b\right)+2\left(a+2c\right)}{2}\)

\(\Rightarrow\)\(\sqrt{8a^2+56}\)\(\le3a+2b+2c\)

Tương tự:

\(\sqrt{8b^2+56}\le2a+3b+2c\),\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)

\(\Rightarrow\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}\le\frac{11a+11b+12c}{2}\)

\(\Rightarrow P\ge\frac{11a+11b+12c}{\frac{11a+11b+12c}{2}}=2\)

\(''=''\Leftrightarrow a=b=\frac{2c}{3}=1\)

26 tháng 5 2018

Ta có \(\sqrt{8a^2+56}\)\(\sqrt{8\left(a^2+7\right)}\)\(\sqrt{8\left(a^2+ab+2bc+2ca\right)}\)=2. \(\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le\) 2(a+b)+(a+2c) = 3a+2b+2c

tương tự \(\sqrt{8b^2+56}\)\(\le\) 2a+3b+2c

\(\sqrt{4c^2+7}\) =\(\sqrt{4c^2+ab+2ac+2bc}\)\(\sqrt{\left(a+2c\right)\left(b+2c\right)}\)\(\le\)(a+b+4c)/2

mẫu số \(\le\)3a+2b+2c+2a+3b+2c+a/2+b/2+2c=(11a+11b+12c)/2

 \(\Rightarrow\)  Q\(\ge\) 2

dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab+2bc+2ca=7\\2\left(a+b\right)=a+2c=b+2c\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

Vây...

14 tháng 12 2020

Áp dụng giả thiết và bất đẳng thức AM - GM, ta được: \(\sqrt{8a^2+48}=\sqrt{8\left(a^2+6\right)}=\sqrt{8\left(a^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le\left(2a+2b\right)+\left(a+2c\right)=3a+2b+2c\)\(\sqrt{8b^2+48}=\sqrt{8\left(b^2+6\right)}=\sqrt{8\left(b^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(b+2c\right)}\le\left(2a+2b\right)+\left(b+2c\right)=2a+3b+2c\)\(\sqrt{4c^2+6}=\sqrt{4c^2+ab+2bc+2ca}=\sqrt{\left(2c+a\right)\left(2c+b\right)}\le\frac{\left(2c+a\right)+\left(2c+b\right)}{2}=\frac{4c+a+b}{2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}\le\frac{11}{2}a+\frac{11}{2}b+6c\)

\(\Rightarrow\frac{11a+11b+12c}{\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}}\ge\frac{11a+11b+12c}{\frac{11}{2}a+\frac{11}{2}b+6c}=2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}ab+2bc+2ca=6\\a+2b=2c;b+2a=2c;a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\sqrt{\frac{6}{7}}\\c=\frac{3\sqrt{42}}{14}\end{cases}}\)

20 tháng 7 2016

Đăt  \(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge8c\)  \(\left(\alpha\right)\)

Mình xin đề xuất một biện pháp khá ngắn gọn. Hy vọng bạn sẽ tìm cách khác.

Ta có: 

\(a^2-ab+b^2=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

nên   \(\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{4}}=\frac{a+b}{2}\)

\(\Rightarrow\)  \(2\sqrt{a^2-ab+b^2}\ge a+b\)  \(\left(1\right)\)

Mặt khác, ta cũng có:

\(a^2-2ca+4c^2=\frac{3}{4}\left(a-2c\right)^2+\frac{1}{4}\left(a+2c\right)^2\ge\frac{1}{4}\left(a+2c\right)^2\)

nên  \(\sqrt{a^2-2ca+4c^2}\ge\frac{a+2c}{2}\)  \(\left(2\right)\)

Khi đó, ta cũng có thể thiết lập được bất đẳng thức tương tự như trên:

\(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  ta được:

\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge a+b+\frac{a+2c}{2}+\frac{b+2c}{2}\)

Hay nói cách khác,  \(VT\left(\alpha\right)\ge4c+\frac{a+b}{2}+\frac{4c}{2}=4c+2c+2c=8x=VP\left(\alpha\right)\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}a=b\\a=2c\\b=2c\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=2c\)

26 tháng 7 2016

thanks

14 tháng 8 2019

Ta có:

\(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{2}{\sqrt{a}+\sqrt{b}}.\)

Ta lại có:

\(\frac{x^2+y^2}{2}\ge\left(\frac{x+y}{2}\right)^2\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)(Cm tương đương là được.)

\(P\ge\frac{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}}{\sqrt{a}+\sqrt{b}}+\frac{2}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)}{2}+\frac{2}{\sqrt{a}+\sqrt{b}}\ge2.\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)}{2}.\frac{2}{\sqrt{a}+\sqrt{b}}}=2\)

Min P=2 <=> ....

20 tháng 12 2016

Ta có: 

\(\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le2a+3b\)

Khi đó \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\), tương tự ta có:

\(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\)

\(\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)\(\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)