Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{8a^2+56}\)= \(\sqrt{8\left(a^2+7\right)}\)= \(\sqrt{8\left(a^2+ab+2bc+2ca\right)}\)=2. \(\sqrt{2\left(a+b\right)\left(a+2c\right)}\)
\(\le\) 2(a+b)+(a+2c) = 3a+2b+2c
tương tự \(\sqrt{8b^2+56}\)\(\le\) 2a+3b+2c
\(\sqrt{4c^2+7}\) =\(\sqrt{4c^2+ab+2ac+2bc}\)= \(\sqrt{\left(a+2c\right)\left(b+2c\right)}\)\(\le\)(a+b+4c)/2
mẫu số \(\le\)3a+2b+2c+2a+3b+2c+a/2+b/2+2c=(11a+11b+12c)/2
\(\Rightarrow\) Q\(\ge\) 2
dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab+2bc+2ca=7\\2\left(a+b\right)=a+2c=b+2c\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)
Vây...
Áp dụng giả thiết và bất đẳng thức AM - GM, ta được: \(\sqrt{8a^2+48}=\sqrt{8\left(a^2+6\right)}=\sqrt{8\left(a^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le\left(2a+2b\right)+\left(a+2c\right)=3a+2b+2c\)\(\sqrt{8b^2+48}=\sqrt{8\left(b^2+6\right)}=\sqrt{8\left(b^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(b+2c\right)}\le\left(2a+2b\right)+\left(b+2c\right)=2a+3b+2c\)\(\sqrt{4c^2+6}=\sqrt{4c^2+ab+2bc+2ca}=\sqrt{\left(2c+a\right)\left(2c+b\right)}\le\frac{\left(2c+a\right)+\left(2c+b\right)}{2}=\frac{4c+a+b}{2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}\le\frac{11}{2}a+\frac{11}{2}b+6c\)
\(\Rightarrow\frac{11a+11b+12c}{\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}}\ge\frac{11a+11b+12c}{\frac{11}{2}a+\frac{11}{2}b+6c}=2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}ab+2bc+2ca=6\\a+2b=2c;b+2a=2c;a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\sqrt{\frac{6}{7}}\\c=\frac{3\sqrt{42}}{14}\end{cases}}\)
Đăt \(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge8c\) \(\left(\alpha\right)\)
Mình xin đề xuất một biện pháp khá ngắn gọn. Hy vọng bạn sẽ tìm cách khác.
Ta có:
\(a^2-ab+b^2=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
nên \(\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{4}}=\frac{a+b}{2}\)
\(\Rightarrow\) \(2\sqrt{a^2-ab+b^2}\ge a+b\) \(\left(1\right)\)
Mặt khác, ta cũng có:
\(a^2-2ca+4c^2=\frac{3}{4}\left(a-2c\right)^2+\frac{1}{4}\left(a+2c\right)^2\ge\frac{1}{4}\left(a+2c\right)^2\)
nên \(\sqrt{a^2-2ca+4c^2}\ge\frac{a+2c}{2}\) \(\left(2\right)\)
Khi đó, ta cũng có thể thiết lập được bất đẳng thức tương tự như trên:
\(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta được:
\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge a+b+\frac{a+2c}{2}+\frac{b+2c}{2}\)
Hay nói cách khác, \(VT\left(\alpha\right)\ge4c+\frac{a+b}{2}+\frac{4c}{2}=4c+2c+2c=8x=VP\left(\alpha\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}a=b\\a=2c\\b=2c\end{cases}}\) \(\Leftrightarrow\) \(a=b=2c\)
Ta có:
\(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{2}{\sqrt{a}+\sqrt{b}}.\)
Ta lại có:
\(\frac{x^2+y^2}{2}\ge\left(\frac{x+y}{2}\right)^2\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)(Cm tương đương là được.)
\(P\ge\frac{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}}{\sqrt{a}+\sqrt{b}}+\frac{2}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)}{2}+\frac{2}{\sqrt{a}+\sqrt{b}}\ge2.\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)}{2}.\frac{2}{\sqrt{a}+\sqrt{b}}}=2\)
Min P=2 <=> ....
Ta có:
\(\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le2a+3b\)
Khi đó \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\), tương tự ta có:
\(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\)
\(\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)\(\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)
\(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2bc+2ac\right)}\)\(=\sqrt{8\left(a+b\right)\left(a+2c\right)}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\)
Áp dụng BĐT AM-GM cho các số không âm:
\(\sqrt{8a^2+56}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\le\frac{4\left(a+b\right)+2\left(a+2c\right)}{2}\)
\(\Rightarrow\)\(\sqrt{8a^2+56}\)\(\le3a+2b+2c\)
Tương tự:
\(\sqrt{8b^2+56}\le2a+3b+2c\),\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
\(\Rightarrow\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}\le\frac{11a+11b+12c}{2}\)
\(\Rightarrow P\ge\frac{11a+11b+12c}{\frac{11a+11b+12c}{2}}=2\)
\(''=''\Leftrightarrow a=b=\frac{2c}{3}=1\)