Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{a^3}}{\sqrt{a}}=\dfrac{a\sqrt{a}}{\sqrt{a}}=a\)(với a>0)
Với a>0 ta có:
\(\dfrac{\sqrt{a^3}}{\sqrt{a}}=\dfrac{\sqrt{a^2\cdot a}}{\sqrt{a}}=\dfrac{\left|a\right|\cdot\sqrt{a}}{\sqrt{a}}=a\)( vì \(a>0\Rightarrow\left|a\right|=a\))
\(1,=0,9\left|x\right|\\ 2,Sửa:\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3\left|y\right|=-3y\)
a: Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right)\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{a^2}\)
b: Để P=3 thì \(4a-1=3a^2\)
\(\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a-1\right)=0\)
hay \(a=\dfrac{1}{9}\)
a) ĐK: a>0; a≠1
Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}.\dfrac{\sqrt{a}-1}{a^2}=\dfrac{4a-1}{a^2}\)
b) Ta có: \(P=3\Leftrightarrow\dfrac{4a-1}{a^2}=3\Leftrightarrow3a^2=4a-1\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(loại\right)\\a=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)
`a)ĐK:{(x>=0),(sqrtx-1ne0):}`
`<=>{(x>=0),(sqrtxne1):}`
`<=>{(x>=0),(x ne 1):}`
`b)A=(x+1-2sqrtx)/(sqrtx-1)+(x+sqrtx)/(sqrtx+1)`
`=(sqrtx-1)^2/(sqrtx-1)+(sqrtx(sqrtx+1))/(sqrtx+1)`
`=sqrtx-1+sqrtx=2sqrtx-1`
`c)A<-1`
`<=>2sqrtx-1<-1`
`<=>2sqrtx<0`
`<=>sqrtx<0` vô lý vì `sqrtx>=0`
a: Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}}+1\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\dfrac{1+\sqrt{a}}{\sqrt{a}}\)
\(=\dfrac{2}{1-\sqrt{a}}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}\)
\(=2\sqrt{x}-1\)
Với a > 1, ta có
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\sqrt{a\left(\sqrt{a-1}\right)}}{1-\sqrt{a}}\dfrac{-\sqrt{a\left(1-\sqrt{a}\right)}}{1-\sqrt{a}}=\sqrt{a}\)
banjcho mình hỏi bài này là làm theo cách nào thê, mong bạn chỉ mình, mình cảm mơn