Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Mà a = b + c nên
Từ (1), (2) suy ra:
với a = b + c và a, b, c ∈ Z, b ≠ 0, c ≠ 0
So sánh: \(\dfrac{434}{561}\) và \(\dfrac{441}{568}\)
* Bài làm:
Vì \(\dfrac{434}{561}\) < 1 => \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\) hay \(\dfrac{434}{561}\) < \(\dfrac{441}{568}\)
a) \(\dfrac{a}{b}\)=\(\dfrac{a\left(b+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+am}{b^2+bm}\) ; (1)
\(\dfrac{a+m}{b+m}\)=\(\dfrac{b\left(a+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+bm}{b^2+bm}\) ; (2)
\(\dfrac{a}{b}\) < \(1\) \(\Rightarrow\) \(a\) < \(b\), suy ra \(ab+am\) < \(ab+bm\). (3)
Từ (1), (2) và (3) ta có: \(\dfrac{a}{b}\) < \(\dfrac{a+m}{b+m}\)
b) Áp dụng, rõ ràng \(\dfrac{434}{561}\) < 1 nên \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\)=\(\dfrac{441}{568}\)
Không. Vì không có phân số nào mà cả tử số và mẫu số nhân với hai số khác nhau lại bằng phân số đã cho cả (hay do m khác n)
5.Phân số tối giản là phân số không thể rút gọn được nữa. VD : 4/5
4. muốn rút gọn phân số ta lấy cả tử vs mẫu chia cho 1 số nào đó
VD: \(\frac{10}{15}=\frac{10:5}{15:5}=\frac{2}{3}\)
Số nghịch đảo của phân số \(\dfrac{a}{b}\)là phân số \(\dfrac{b}{a}\) ; (a ,b ∈ Z , a ≠ 0 , b ≠ 0)