K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

1 điểm M thuộc Δ là: M (-1; 3; 5) và 1 vecto chỉ phương của Δ là  a →  = (2;-3;4)

14 tháng 2 2018

Chọn A

Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).

Suy ra (Q):2x+y+z-3=0.

Do Δ // (P) nên Δ (Q)).

D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).

Gọi d là đường thẳng đi qua N và vuông góc (P), 

Ta có N’ d => N' (-4+2t;2+t;1+t); N’ (Q) => t = 4/3

  cùng phương 

Do |a|, |b| nguyên tố cùng nhau nên chọn 

Vậy  |a| + |b| + |c| = 15.

2 tháng 10 2018

Gọi I = d . Do I nên I (2t + 1; t – 1; -t). Suy ra 

Suy ra , từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2;1; 0) nên có phương trình:

3 tháng 6 2019

Chọn A

Gọi I = d ∩ Δ. Do I Δ nên I (2t + 1; t – 1; -t).

từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2 ; 1 ; 0) nên có phương trình 

3 tháng 5 2018

Chọn B.

21 tháng 6 2017

Chọn A

Vì đường thẳng Δ đi qua điểm A (0;0;1) và vuông góc với mặt phẳng Ozx thì Δ song song với trục Oy và nằm trong mặt phẳng Oyz. Dễ thấy OA là đường vuông góc chung của Δ và Ox

Xét mặt phẳng (α) đi qua I (0;0;1/2) và là mặt phẳng trung trực của OA.

Khi đó Δ // (α), Ox // (α) và mọi điểm nằm trên (α) có khoảng cách đến Δ và Ox là bằng nhau.

Vậy tập hợp điểm C là các điểm cách đều đường thẳng Δ và trục Ox là mặt phẳng (α). Mặt phẳng (α) đi qua I (0;0;1/2) có véc tơ pháp tuyến là  nên có phương trình:

Đoạn BC nhỏ nhất khi C là hình chiếu vuông góc của B lên (α). Do đó khoảng cách nhỏ nhất giữa điểm B (0;4;0) tới điểm C chính là khoảng cách từ B (0;4;0) đến mặt phẳng (α):

 

4 tháng 9 2017

11 tháng 5 2019

Chọn A.

Mặt phẳng (P) có vectơ pháp tuyến 

Vì ∆ vuông góc với (P) nên d có vectơ chỉ phương 

∆ đi qua điểm M(-2;1;1) và có vectơ chỉ phương  u ∆ →

Vậy phương trình chính tắc của ∆ là  x + 2 2 = y - 1 - 1 = z - 1 1

1 tháng 6 2018

Chọn C