K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Lời giải:

Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:

$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$

$A\in Ox\Rightarrow y_A=0$

$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$

$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$

$B\in Oy\Rightarrow x_B=0$

$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$

$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$

Diện tích tam giác $ABC$:

$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$

Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$

Thay vào PTĐT $(d)$:

$4bx+by-(4b+4b)=0$

$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$

$\Rightarrow 4x+y-8=0$

Đây chính là PTĐT cần tìm.

19 tháng 2 2022

Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với

9 tháng 3 2023

Help

 

NV
7 tháng 4 2021

Phương trình đường thẳng d có dạng:

\(y=kx-2k+1\)

Tọa độ A và B có dạng: \(A\left(\dfrac{2k-1}{k};0\right)\) ; \(B\left(0;-2k+1\right)\)

Để A, B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2k-1}{k}>0\\-2k+1>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó ta có: \(S_{OAB}=\dfrac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)

\(\Rightarrow\left(\dfrac{2k-1}{k}\right)\left(-2k+1\right)=8\)

\(\Leftrightarrow4k^2-4k+1=-8k\Leftrightarrow4k^2+4k+1=0\Rightarrow k=-\dfrac{1}{2}\)

Phương trình d: \(y=-\dfrac{1}{2}x+2\)

30 tháng 4 2017

\(\Delta\)//d:3x-4y+12=0 \(\Rightarrow\) \(\Delta\): 3x - 4y +c = 0 (c\(\ne\)12)

\(\Delta\cap Ox=A\left(\dfrac{-c}{3};0\right)\); \(\Delta\cap Oy=B\left(0;\dfrac{c}{4}\right)\)

\(\Rightarrow AB^2=\left(\dfrac{-c}{3}\right)^2+\left(\dfrac{c}{4}\right)^2=5^2\)\(\Leftrightarrow\) c2=144 \(\Leftrightarrow\left[{}\begin{matrix}c=12\left(loại\right)\\c=-12\left(thỏaman\right)\end{matrix}\right.\) \(\Rightarrow\Delta\): 3x - 4y - 12 = 0

30 tháng 4 2017

Cám ơn nhiều ạ

NV
14 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt

Phương trình AB:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

b.

d vuông góc \(\Delta\Rightarrow d\) nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.2-3.\left(-1\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{2}{5}\)

\(\Leftrightarrow\left|c+11\right|=2\Rightarrow\left[{}\begin{matrix}c=-9\\c=-13\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y-13=0\\4x-3y-9=0\end{matrix}\right.\)

NV
21 tháng 7 2021

Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất

NV
22 tháng 7 2021

Do d cắt 2 trục, gọi pt d có dạng: \(y=ax+b\) (\(a\ne0\))

d đi qua M nên:  \(4a+b=1\Rightarrow b=-4a+1\Rightarrow y=ax-4a+1\)

Hoành độ A là nghiệm: \(ax_A-4a+1=0\Rightarrow x_A=\dfrac{4a-1}{a}\)

Tung độ B là nghiệm: \(y_A=a.0-4a+1=-4a+1\)

Do A; B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{4a-1}{a}>0\\-4a+1>0\end{matrix}\right.\) \(\Rightarrow a< 0\)

Khi đó ta có: \(\left\{{}\begin{matrix}OA=x_A=\dfrac{4a-1}{a}\\OB=y_A=-4a+1\end{matrix}\right.\)

\(S=OA+OB=\dfrac{4a-1}{a}-4a+1=5+\left(-4a+\dfrac{1}{-a}\right)\ge5+2\sqrt{\dfrac{-4a}{-a}}=9\)

\(S_{min}=9\) khi \(-4a=\dfrac{1}{-a}\Leftrightarrow a=-\dfrac{1}{2}\)

Phương trình d: \(y=-\dfrac{1}{2}x+3\)