Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)
a, \(d\left(M;\Delta\right)=\dfrac{\left|6-9\right|}{\sqrt{1^2+2^2}}=\dfrac{3\sqrt{5}}{5}\)
b, Đường tròn cần tìm có bán kính \(R=d\left(M;\Delta\right)=\dfrac{3\sqrt{5}}{5}\), tâm \(M=\left(6;0\right)\)
Phương trình đường tròn: \(\left(x-6\right)^2+y^2=\dfrac{9}{5}\)
a: MN lớn nhất
=>MN là đường kính
=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)
Ta có hệ pt:
3a+b=0 và -a+b=2
=>a=-1/2 và b=1/2
b: Kẻ IH vuông góc MN
MN nhỏ nhất khi H trùng với A
=>vecto IA=(4;-2)
Δ có phương trình là:
4(x-3)+(-2)(y-0)=0
=>4x-12-2y=0
\(\left\{{}\begin{matrix}t=x-2\\t=\frac{y-3}{2}\end{matrix}\right.\) \(\Rightarrow x-2=\frac{y-3}{2}\Leftrightarrow2x-y-1=0\)
Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d: \(1\left(x-3\right)+2y=0\Leftrightarrow x+2y-3=0\)
Gọi C là giao điểm d và \(\Delta\Rightarrow\) tọa độ C thỏa: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(1;1\right)\)
B đối xứng A qua \(\Delta\Leftrightarrow C\) là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_C-x_A=-1\\y_B=2y_C-y_A=2\end{matrix}\right.\) \(\Rightarrow B\left(-1;2\right)\)
\(\Delta'\) đối xứng \(\Delta\) qua A \(\Rightarrow\Delta'//\Delta\) và đi qua B
\(\Rightarrow\Delta'\) nhận \(\left(2;-1\right)\) là 1 vtpt và qua B
Pt \(\Delta'\): \(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
Phương trình đường thẳng denta có dạng: \(y=k\left(x-1\right)-3=kx-k-3\)
Để denta cắt 2 trục Ox, Oy tạo thành tam giác \(\Rightarrow k\ne\left\{0;-3\right\}\)
Khi đó ta có: \(A\left(\dfrac{k+3}{k};0\right)\) \(\Rightarrow OA=\left|\dfrac{k+3}{k}\right|\)
\(B\left(0;-k-3\right)\Rightarrow OB=\left|k+3\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow OA.OB=4\)
\(\Leftrightarrow\dfrac{\left(k+3\right)^2}{\left|k\right|}=4\Leftrightarrow\left(k+3\right)^2=4\left|k\right|\)
\(\Rightarrow\left[{}\begin{matrix}k^2+6k+9=4k\\k^2+6k+9=-4k\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k^2+2k+9=0\left(vn\right)\\k^2+10k+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=-1\\k=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-x-2\\y=-9x+6\end{matrix}\right.\)