K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường thẳng d đi qua M(2; 3) và tạo với chiều dương trục Ox một góc 450. PTTQ của đường thẳng d là 

A. 2x - y - 1 = 0   B. x - y + 1 = 0   C. x + y - 5 0 =     D. -x + y - 1 = 0

a: Vì (d) vuông góc với (Δ) nên -a=-1

hay a=1

Vậy: (d): y=x+b

Thay x=1 và y=-5 vào (d), ta được: b+1=-5

hay b=-6

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}5x^2+4x+3=-3x+3\\y=-3x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+7\right)=0\\y=-3x+3\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(0;3\right);\left(-\dfrac{7}{5};\dfrac{36}{5}\right)\right\}\)

3 tháng 12 2021

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

3 tháng 12 2021

câu c bạn giải kỹ hơn đc ko 

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

20 tháng 6 2020

\(B\in d\)=> B ( 7-2m; -3 +m) 

\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t ) 

Mà A; B;B' \(\in\)\(\Delta\) và AB = AB' 

=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)

=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=>  m = 1; t = 1 

=> B(5 ; -2); C( -1; - 4) 

=> Viết phương trình d :....

35. Trong mặt phẳng tọa độ Oxy , cho hình bình hành ABCD có A(4;-1) , phương trình CD : 2x + 5y +6=0. Viết phương trình cạnh AB. A. 2x + 5y +3=0 B. 2x +5y -3 =0 C. 4x -y-3=0 D. 2x -5y-3=0 36. Trong mặt phẳng tọA độ Oxy , lập phương trình tổng quát của đg thẳng d , biết d đi qua A(1;3) và song song với trục hoành. A. x=1 B. y=3 C. x=3 D. y=1 37. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đg thẳng d , biết...
Đọc tiếp

35. Trong mặt phẳng tọa độ Oxy , cho hình bình hành ABCD có A(4;-1) , phương trình CD : 2x + 5y +6=0. Viết phương trình cạnh AB.

A. 2x + 5y +3=0

B. 2x +5y -3 =0

C. 4x -y-3=0

D. 2x -5y-3=0

36. Trong mặt phẳng tọA độ Oxy , lập phương trình tổng quát của đg thẳng d , biết d đi qua A(1;3) và song song với trục hoành.

A. x=1

B. y=3

C. x=3

D. y=1

37. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đg thẳng d , biết rằng d vuông góc với trục hoành đồng thời đi qua A(1;3)

A. y=30

B. y=1

C. x=3

D. x=1

38. Cho 2 đg thẳng d1 : 2x+y-7=0 và d2 : x=-1 + 3t và y=2 + t. Giao điểm của 2 đg thẳng d1 và d2 có tọa độ A(m;n). Tính giá trị P = 2m + n.

A.6

B. 7

C. 8

D.9

39. Trong mặt phẳng tọa độ Oxy , cho điểm M(3;1). Viết phương trình đg thẳng đi qua M và cắt các tia Ox và Oy lần lượt tị A và B sao cho M là trung điểm của AB.

A. 3x + y -10=0

B. x- 3y =0

C. 3x - y -8 = 0

D. x + 3y - 6=0

40. Trong mặt phẳng tọa độ Oxy , tìm hình chiếu N của điểm M (2;-5) lên đg thẳng d : x = -7 + 3t và y = 2 - 4t

A. N( -2/5 ; -34/5)

B. N(2/5 ; 34/5)

C. (-2;-34)

D. ( 2 ;34)

2
NV
10 tháng 4 2020

Bài 38:

Thay phương trình d2 vào d1 ta được:

\(2\left(-1+3t\right)+\left(2+t\right)-7=0\)

\(\Leftrightarrow7t-7=0\Rightarrow t=1\)

\(\Rightarrow\left\{{}\begin{matrix}m=-1+3t=2\\n=2+t=3\end{matrix}\right.\)

\(\Rightarrow P=7\)

Bài 39:

Gọi tọa độ A(a;0) và tọa độ B(0;b)

Do M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}\frac{a+0}{2}=3\\\frac{b+0}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(6;0\right)\\B\left(0;2\right)\end{matrix}\right.\)

Phương trình AB: \(\frac{x}{6}+\frac{y}{2}=1\Leftrightarrow x+3y-6=0\)

Bài 40:

d có 1 vtcp là \(\left(3;-4\right)\)

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' có 1 vtpt là \(\left(3;-4\right)\)

Phương trình d':

\(3\left(x-2\right)-4\left(y+5\right)=0\Leftrightarrow3x-4y-26=0\)

N là giao của d và d' nên tọa độ N thỏa mãn:

\(3\left(-7+3t\right)-4\left(2-4t\right)-26=0\Rightarrow t=\frac{11}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x_N=-7+3t=-\frac{2}{5}\\y_N=2-4t=-\frac{34}{5}\end{matrix}\right.\) \(\Rightarrow N\left(-\frac{2}{5};-\frac{34}{5}\right)\)

NV
10 tháng 4 2020

Bài 35:

Do \(AB//CD\) nên đường thẳng AB nhận \(\left(2;5\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x-4\right)+5\left(y+1\right)=0\Leftrightarrow2x+5y-3=0\)

Bài 36:

Do đường thẳng song song trục hoành nên có dạng \(y=a\)

Do đường thẳng qua A(1;3) nên pt là \(y=3\)

Bài 37:

Do thẳng thẳng vuông góc trục hoành nên có dạng \(x=a\)

Đường thẳng qua A(1;3) nên có pt: \(x=1\)

16 tháng 4 2020

Song song với d nên có a = 3

=> Ý B hoặc C

Thay x = 1; y = -2 vào câu B thấy thỏa mãn

Vậy Chọn B

1: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)

2: Vì (d)//y=-3x+2 nên a=-3

Vậy: y=-3x+b

Thay x=3 và y=3 vào y=-3x+b, ta được:

b-9=3

hay b=12

23 tháng 2 2022

sao ngắn v bn @@