Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các công thức lần lượt là:
♦ \(a^m.a^n=a^{m+n}\)
♦ \(a^m:a^n=a^{m-n}\)
♦ \(\left(a^m\right)^n=a^{m.n}\)
♦ \(\left(m.n\right)^a=m^a.n^a\)
♦ \(\left(\dfrac{m}{n}\right)^a=\dfrac{m^a}{n^a}\)
Lần lượt :
a) am.an = am+n
b) am : an = am-n (m≥n , a≠0)
c) (an)m = am.n
d) (a.b)m = am.bm
e- (\(\dfrac{a}{b}\))m = \(\dfrac{^{a^m}}{b^m}\)
1. Viết công thức:
- Nhân hai lũy thừa cùng cơ số: tổng 2 số mũ
xm . xn = xm+n
- Chia hai lũy thừa cùng cơ số: hiệu 2 số mũ
xm : xn = xm - n (x # 0, lớn hơn hoặc bằng n)
- Lũy thừa của 1 lũy thừa: Tích 2 số mũ
(xm )n = xm.n
- Lũy thừa của một tích: tích các lũy thừa
(x . y)n = xn . yn
- Lũy thừa của một thương: thương các lũy thừa
2. Thế nào là tỉ số của hai số hữu tỉ ? Cho ví dụ
- Số hữu tỉ là số viết đc dưới dạng phân số \(\frac{a}{b}\)
Vd: \(\frac{3}{4}\); 18
\(x^m:x^n=x^{m-n}\)
\(x^m.x^n=x^{m+n}\)
\(\left(x^m\right)^n=x^{m.n}\)
\(x^m\cdot x^n=x^{m+n}\left(m,n\in N\right)\\ x^m:x^n=x^{m-n}\left(m>n;m,n\in N\right)\\ \left(x^m\right)^n=x^{m\cdot n}\)
\(a^m\cdot a^n=a^{m+n}\left(m,n\in N\right)\\ a^m:a^n=a^{m-n}\left(m>n;m,n\in N\right)\)
\(a^n:a^m=a^{n-m}\)
\(a^n\cdot a^m=a^{n+m}\)
\(\left(a^n\right)^m=a^{n\cdot m}\)
\(\left(a\cdot b\right)^n=a^n\cdot b^n\)
\(\left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\)