Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+2x\left(y+1\right)+y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1=\left(x+y+1\right)^2\)
b, \(u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)
\(=u^2+v^2+2u+2v+2uv+2u+2v+2+2\)
\(=\left(u^2+2uv+v^2\right)+\left(4u+4v\right)+4\)
\(=\left(u+v\right)^2+4\left(u+v\right)+2^2=\left(u+v+2\right)^2\)
1.
a) \(A=x^2+2x\left(y+1\right)+y^2+2y+1\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(A=\left(x+y+1\right)^2\)
b) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)\(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+1+1\)\(B=\left(u^2+2u+1\right)+2\left(u+1\right)\left(v+1\right)+\left(v^2+2v+1\right)\)\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2\)\(B=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
tik mik nha !!!
1.
a. \(x^2-4x\Rightarrow x^2-4x+4=\left(x-2\right)^2\)
b. \(x^2+9\Rightarrow x^2+9+6x=\left(x+3\right)^2\)
c. \(x^2+xy+y^2\Rightarrow x^2+xy+y^2+xy=\left(x+y\right)^2\)
d. \(x^2-x\Rightarrow x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
này mình có vài câu không làm được, xin lỗi bạn nha
\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)
2x y 2 + x 2 y 4 + 1 = x y 2 2 + 2.x y 2 .1 + 1 2 = x y 2 + 1 2
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
a) ( x + 1 ) 2 . b) ( x – 4 ) 2 .
c) x 2 4 + x + 1 ; d) ( 2 x – 2 y ) 2 .
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
a.) \(A=x^2+y^2+1+2xy+2x+2y=\left(x+y+1\right)^2.\)
b.) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2=u^2+2u+1+2\left(u+1\right)\left(v+1\right)+v^2+2v+1\)
\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2