K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEAI và ΔECD có

EA=EC

góc AEI=góc CED

EI=ED

=>ΔEAI=ΔECD

=>AI=CD

b: ΔEAI=ΔECD

=>góc EAI=góc ECD

=>AI//CD

c: Xét ΔDAI và ΔBDC có

DA=BD

AI=DC

DI=BC

=>ΔDAI=ΔBDC

d: Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

nên DE là đường trung bình

=>DE=1/2BC và ED//BC

28 tháng 11 2021

Gợi ý: Xét tam giác AEI và tam giác CED 

28 tháng 11 2021

xem xét ròi nhưng chưa hiểu lắm

14 tháng 9 2020

                                                                Bài giải

A B C D E F

a) Xét  \(\Delta AEF\)\(\Delta CED\) có :

AE = CE ( E là trung điểm AC )

\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)

EF = ED ( gt )

\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)

\(\Rightarrow\text{ }AF=DC\)  ( 2 cạnh tương ứng ) 

b)

Xét \(\Delta AED\) và \(\Delta CEF\) có:

AE = EC (gt)

AED = CEF ( đối đỉnh)

ED = EF (gt)

Do đó, \(\Delta AED\)  =  \(\Delta CEF\) (c.g.c)

=> AD = CF (2 cạnh tương ứng)

ADE = CFE (2 góc tương ứng)

Mà ADE và CFE là 2 góc so le trong

nên CF // AD hay CF // AB hay CF//DB

Nối đoạn CD

Xét \(\Delta BDC\)\(\Delta FCD\) có:

BD = FC ( cùng = AD)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, \(\Delta BDC\)  = \(\Delta FCD\)  (c.g.c)

=> BC = FD ( 2 cạnh tương ứng )

\(DE=EF=\frac{1}{2}FD\) 

=>DE=1/2 BC ( đpcm)

Lại có : \(\Delta BDC=\Delta FCD\)( cmt)

=> BCD = FDC (2 góc tương ứng)

Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)

3 tháng 2 2020

a, D;E Lần lượt là trung điểm của AB và AC (gt)

=> DE là đtb của tam giác ABC (Đn)

=> DE = 1/2BC => 2DE = BC (đl)

DE = EI => DI = 2DE 

=> DI = BC 

b, 

11 tháng 11 2021

TL :

DE = BC  . Xét BD//BF nên các cạnh đều đối diện nhau

HT

11 tháng 11 2021

a) Xét t/g AEF và t/g CED có :

AE=CE ( E là trung điểm AC)

góc AEF = góc CED ( đối đỉnh)

EF=ED( gt)

=> t/g AEF = t/g CED ( c.g.c)

=> AF=DC ( 2 cạnh tương ứng ) 

b)

Xét t/g AED và t/g CEF có:

AE = EC (gt)

AED = CEF ( đối đỉnh)

ED = EF (gt)

Do đó, t/g AED = t/g CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng)

ADE = CFE (2 góc tương ứng)

Mà ADE và CFE là 2 góc so le trong

nên CF // AD hay CF // AB hay CF//DB

Nối đoạn CD

Xét t/g BDC và t/g FCD có:

BD = FC ( cùng = AD)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, t/g BDC = t/g FCD (c.g.c)

=> BC = FD ( 2 cạnh tương ứng )

Mà DE=EF=1/2 FD 

=>DE=1/2 BC ( đpcm)

Lại có : t/g BDC =t/g FCD ( cmt)

=> BCD = FDC (2 góc tương ứng)

Mà BCD và FDC là 2 góc so le trong

nên DF // BC 

hay DE // BC ( E thuộc DF)( đpcm)