Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Xét ΔBMD và ΔCME có:
BM = MC (vì M là trung điểm BC)
MD = ME (giả thiết)
∠BMD = ∠EMC (hai góc đối đỉnh)
⇒ ΔBMD = ΔCME (c.g.c)
⇒ ∠D = ∠MEC (hai góc t.ư)
Mà hai góc này ở vị trí so le trong nên suy ra BD // CE.
Ta có AB ⊥ BD (giả thiết) và BD // CE (chứng minh trên) nên AB ⊥ CE
Bạn tự vẼ hình nha
Gọi N là giao điểm của CE và AB
Xét CME và BMD có
MB=MC(giả thiết )
MD=ME(giả thiết)
BMD=CME(2 góc đối đỉnh)
Do đó CME=BMD(c.g.c)
=>MBD=MCE => BD // CE
=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)
=>CNB=180-CNB=180-90=90
Vậy CE vuông góc với AB
a) Xét ΔBMD và ΔCME có
BM=CM(M là trung điểm của BC)
\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)
MD=ME(gt)
Do đó: ΔBMD=ΔCME(c-g-c)
b) Ta có: ΔBMD=ΔCME(cmt)
nên BD=CE(hai cạnh tương ứng)
c) Ta có: ΔBMD=ΔCME(cmt)
nên \(\widehat{BDM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BDM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên BD//EC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BD//EC(cmt)
BD\(\perp\)AB(gt)
Do đó: EC\(\perp\)AB(Định lí 2 từ vuông góc tới song song)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Bạn tự vẼ hình nha
Gọi N là giao điểm của CE và AB
Xét CME và BMD có
MB=MC(giả thiết )
MD=ME(giả thiết)
BMD=CME(2 góc đối đỉnh)
Do đó CME=BMD(c.g.c)
=>MBD=MCE => BD // CE
=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)
=>CNB=180-CNB=180-90=90
Vậy CE vuông góc với AB
xét tam giác EMC và tam giác DMB
có góc EMC=góc DMB
ME=MD(GT)
MB=MC (GT)
=>tam giác EMC=Tam giác DMB(c.g.c)
=>goc CEM= goc DBM (2goc tuong ung)
ma go CEM va Goc DBM la 2 goc SLT
=>AC song song BD
và Góc ABD=90 do (GT)
=> góc AHC =90 do ( 2goc đồng vị )
vậy CE vuông góc với AB tại H