K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại B và ΔAED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)

b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)

Ta có: ΔABC vuông tại B(gt)

nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)

hay \(\widehat{DCA}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)

Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)

nên ΔDCA cân tại D(Định lí đảo của tam giác cân)

Suy ra: DA=DC(hai cạnh bên)

Xét ΔAED vuông tại E và ΔCED vuông tại E có 

DA=DC(cmt)

DE chung

Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)

Suy ra: EA=EC(hai cạnh tương ứng)

22 tháng 3 2018

Ta có tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

=> góc ABD = góc HBD = 30 độ

Xét tam giác ABC ta có

góc ABC + góc ACB + góc BAC = 180 độ

=> góc ACB = 30 độ

Ta có góc BDH = 90 độ - 30 độ = 60 độ

        góc CDH = 90 độ - 30 độ 60 độ

Tam giác BHD = tam giác CHD ( g.c.g )

=> BH = CH ( hai cạnh tương ứng )           ( 1 )

Tam giác CHD vuông tại H => CD > CH ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )         ( 2 )

Từ (1) và (2) => BH < CD

15 tháng 2 2016

1) ke AE vgoc BC; AE catBD tai M 
ke AF vgoc BD 
de dang c/m tgAFD vuong can taiF=>AD=AFcan2 
tgAFM vuong taiF va gMAF=60=>AM=2AF 
tgAMB can taiM=>AM=BM 
tgBMC deu=>BC=BM=CM 
vay AD=(AM/2)can2=(BC/2)can2=can2.

2)???

21 tháng 2 2020

A B C D 4cm

a) Xét △ABD và △ABC có :

           AB chung (gt)

           AD = AC (gt)

\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)

b) Vì △ABD = △ABC

\(\Rightarrow\)BD = BC

\(\Rightarrow\)△BCD cân tại B

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)

\(\Rightarrow\widehat{CBD}=60^o\)

Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\)△BCD là tam giác đều

c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)

\(\Rightarrow\)△ABC là tam giác nửa đều

\(\Rightarrow\)BC = 2AC

\(\Rightarrow\)BC = 8 cm

Vì AD = AC (gt)

\(\Rightarrow\)AD = 4cm

Vậy BC = 8 cm

       AD = 4cm

21 tháng 2 2020

B A D C     Hình ảnh chỉ mang tính chất minh họa

a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\)  ( 2 góc kề bù )

\(\Rightarrow\widehat{DAB}=90^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có

AB : cạnh chung

AC =  AD  ( gt)

\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\)  ( c-g-c )

b) Theo câu a ta có \(\Delta ABC\) =    \(\Delta ABD\)

\(\Rightarrow BC=BD\)  (2 cạnh tương ứng )

   +) Xét \(\Delta BCD\) có

\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)

\(\Rightarrow\)\(\Delta BCD\)  là tam giác đều

cTheo  bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\)  ( gt)

\(\Rightarrow AD=4\) cm

+) Xét \(\Delta ABC\) vuông tại A  

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ABC}+60^o=90^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)

\(\Rightarrow AC=\frac{1}{2}BC\)  ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs   góc 30 độ bằng 1 nửa cạnh huyền )

\(\Rightarrow BC=2.AC\)

\(\Rightarrow BC=2.4=8\)  ( cm)

Vậy AD = 4 ( cm) và BC = 8  ( cm)

!! K chắc

@@ Học tốt

Chiyuki Fujito

a: góc C<góc B

=>AB<AC

b: Xét ΔABM co AB=AM và góc A=60 độ

nên ΔAMB đều