Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)
b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)
Ta có: ΔABC vuông tại B(gt)
nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)
hay \(\widehat{DCA}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDCA cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(hai cạnh bên)
Xét ΔAED vuông tại E và ΔCED vuông tại E có
DA=DC(cmt)
DE chung
Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)
Suy ra: EA=EC(hai cạnh tương ứng)
Ta có tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> góc ABD = góc HBD = 30 độ
Xét tam giác ABC ta có
góc ABC + góc ACB + góc BAC = 180 độ
=> góc ACB = 30 độ
Ta có góc BDH = 90 độ - 30 độ = 60 độ
góc CDH = 90 độ - 30 độ 60 độ
Tam giác BHD = tam giác CHD ( g.c.g )
=> BH = CH ( hai cạnh tương ứng ) ( 1 )
Tam giác CHD vuông tại H => CD > CH ( trong tam giác vuông cạnh huyền là cạnh lớn nhất ) ( 2 )
Từ (1) và (2) => BH < CD
1) ke AE vgoc BC; AE catBD tai M
ke AF vgoc BD
de dang c/m tgAFD vuong can taiF=>AD=AFcan2
tgAFM vuong taiF va gMAF=60=>AM=2AF
tgAMB can taiM=>AM=BM
tgBMC deu=>BC=BM=CM
vay AD=(AM/2)can2=(BC/2)can2=can2.
2)???
a) Xét △ABD và △ABC có :
AB chung (gt)
AD = AC (gt)
\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)
b) Vì △ABD = △ABC
\(\Rightarrow\)BD = BC
\(\Rightarrow\)△BCD cân tại B
\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)
\(\Rightarrow\widehat{CBD}=60^o\)
Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\)△BCD là tam giác đều
c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)
\(\Rightarrow\)△ABC là tam giác nửa đều
\(\Rightarrow\)BC = 2AC
\(\Rightarrow\)BC = 8 cm
Vì AD = AC (gt)
\(\Rightarrow\)AD = 4cm
Vậy BC = 8 cm
AD = 4cm
Hình ảnh chỉ mang tính chất minh họa
a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\) ( 2 góc kề bù )
\(\Rightarrow\widehat{DAB}=90^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có
AB : cạnh chung
AC = AD ( gt)
\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\) ( c-g-c )
b) Theo câu a ta có \(\Delta ABC\) = \(\Delta ABD\)
\(\Rightarrow BC=BD\) (2 cạnh tương ứng )
+) Xét \(\Delta BCD\) có
\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)
\(\Rightarrow\)\(\Delta BCD\) là tam giác đều
cTheo bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\) ( gt)
\(\Rightarrow AD=4\) cm
+) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)
\(\Rightarrow AC=\frac{1}{2}BC\) ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
Vậy AD = 4 ( cm) và BC = 8 ( cm)
!! K chắc
@@ Học tốt
Chiyuki Fujito
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều