Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Phép biến hình trong mặt phẳng là quy tắc đặt tương ứng mỗi điểm M trong mặt phẳng xác định được duy nhất M’ trong mặt phẳng đó.
+ Phép dời hình là phép biến hình bảo toàn khoẳng cách giữa hai điểm bất kì.
+ Phép đồng dạng tỉ số k là phép biến hình biến hai điểm M, N bất kì thành M’; N’ sao cho M’N’ = k.MN.
+ Phép dời hình chính là phép đồng dạng với tỉ số k = 1.
- Phép biến hình:
Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M\' của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng. Nếu kí hiệu phép biến hình đó là F thì ta viết F(M) = M\' hay M\' = F(M) và gọi điểm M\' là ảnh của điểm M hay M là điểm tạo ảnh của M\' qua phép biến hình F.
- Phép dời hình:
Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì. Nghĩa là với hai điểm M, N tùy ý và ảnh M', N' tương ứng của chúng, ta luôn có M'N'=MN.
- Phép đồng dạng:
Phép biến hình f được gọi là phép đồng dạng tỉ số k, (k>0), nếu với hai điểm M, N bất kì và ảnh M\', N\' tương ứng của chúng, ta luôn có M\'N\' = kMN.
Mối liên hệ: Phép dời hình là trường hợp riêng của phép đồng dạng với tỉ số k = 1.
- Phép biến hình:
Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M\' của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng. Nếu kí hiệu phép biến hình đó là F thì ta viết F(M) = M' hay M' = F(M) và gọi điểm M' là ảnh của điểm M hay M là điểm tạo ảnh của M\' qua phép biến hình F.
- Phép dời hình:
Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì. Nghĩa là với hai điểm M, N tùy ý và ảnh M', N' tương ứng của chúng, ta luôn có M'N'=MN.
- Phép đồng dạng:
Phép biến hình f được gọi là phép đồng dạng tỉ số k, (k>0), nếu với hai điểm M, N bất kì và ảnh M', N' tương ứng của chúng, ta luôn có M'N' = kMN.
Mối liên hệ: Phép dời hình là trường hợp riêng của phép đồng dạng với tỉ số k = 1.
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
Lấy điểm N ( x 1 ; y 1 ) , thì điểm N ′ ( 2 x 1 − 1 ; − 2 y 1 + 3 ) = F ( N ) . Ta có
Từ đó suy ra với hai điểm M, N tùy ý và M', N' lần lượt là ảnh của chúng qua F ta có M′N′ = 2MN. Vậy F là phép đồng dạng với tỉ số đồng dạng là 2.
\(T_{\overrightarrow{v}}\left(M\right)=M_1\Rightarrow\left\{{}\begin{matrix}x_{M1}=3+1=4\\y_{M1}=2+5=7\end{matrix}\right.\) \(\Rightarrow M_1\left(4;7\right)\)
\(Q_{\left(0;90^0\right)}\left(M_1\right)=M_2\Rightarrow\left\{{}\begin{matrix}x_{M2}=-y_{M1}=-7\\y_{M2}=x_{M1}=4\end{matrix}\right.\)
Vậy ảnh của điểm M qua 2 phép dời hình nói trên là \(M_2\left(-7;4\right)\)
Gọi d 1 là ảnh của d qua phép quay tâm 0 góc 90 o . Vì d chứa tâm quay O nên d 1 cũng chứa O. Ngoài ra d 1 vuông góc với d nên d 1 có phương trinh: 9x + 2y = 0.
Gọi d' là ảnh của d 1 qua phép tịnh tiến vectơ v. Khi đó phương trình của d' có dạng x + 2y + C = 0. Vì d' chứa O′(3;1) là ảnh của O qua phép tịnh tiến vectơ v nên 3 + 2 + C = 0 từ đó C = -5. Vậy phương trình của d' là x + 2y – 5 = 0.
V ( 0 ; 1 / 2 ) ( M ( 4 ; 2 ) ) = M ' ( 2 ; 1 ) ; Đ O x ( M ' ( 2 ; 1 ) ) = M " ( 2 ; - 1 ) .
Đáp án A.
phép dời hình là phép biến điểm thành điểm tia thành tia đoạn thẳng thành đoạn thẳng bằng nó, đừong tròn thành đường tròn cùng bán kính...........(trong sgk định nghĩa ý)
phép dời hình koh làm thay đổi khoảng cách của 2 điểm bất kì
dễ dàng thấy khoảng cách OM và OM' trong phép biến F1 là bằng nhau
con trong phép 2 thì khác nhau nó làm thay đổi khoảng cách nên không là phép biến hình còn nếu muốn tổng quát thì chon điểm n(x1;y1) bất kì rùi so sánh khoảng cách NM và NM'