Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Delta ABC\text{ cân }A\Rightarrow AH\text{ cũng là trung tuyến}\\ \left\{{}\begin{matrix}BH=HC\\AH=HE\end{matrix}\right.\Rightarrow ABEC\text{ là hbh}\\ \text{Mà }AE\bot BC=\left\{H\right\}\Rightarrow ABEC\text{ là hình thoi}\\ b,\text{Vì }D,F\text{ là trung điểm }AH,HC\Rightarrow DF\text{ là đtb }\Delta AHC\\ \Rightarrow DF=\dfrac{1}{2}AC\\ \text{Xét }\Delta AHC\bot H\Rightarrow HI=\dfrac{1}{2}AC\left(\text{trung tuyến ứng cạnh huyền }\right)\\ \Rightarrow DF=HI\)
a: Xét tứ giác ABEC có
H là trung điểm của AE
H là trung điểm của BC
Do đó: ABEC là hình bình hành
mà AB=AC
nên ABEC là hình thoi
a, Xét tứ giác ADHE có ^ADH = ^AEH = ^DAE = 900
=> tứ giác ADHE là hcn
=> AH = DE (2 đường chéo bằng nhau)
b, Xét tam giác AHB và tam giác CHA ta có
^AHB = ^CHA = 900
^HAB = ^HCA ( cùng phụ ^HAC )
Vậy tam giác AHB~ tam giác CHA (g.g)
\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=BH.CH\)
c, Xét tam giác AHD và tam giác ABH có
^ADH = ^AHB = 900
^A _ chung
Vậy tam giác AHD ~ tam giác ABH (g.g)
\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\Rightarrow AH^2=AD.AB\)(1)
tương tự tam giác AEH ~ tam giác AHC (g.g)
\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AH^2=AE.AC\left(2\right)\)
Từ (1) ; (2) suy ra \(AD.AB=AE.AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét tam giác ADE và tam giác ACB
^A _ chung
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(cmt\right)\)
Vậy tam giác ADE ~ tam giác ACB (c.g.c)
\(1,\Leftrightarrow x^2-8x+16-x^2+x+12=7\\ \Leftrightarrow-7x=-21\\ \Leftrightarrow x=3\\ 2,\Leftrightarrow\left(x-4\right)^2-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Xét hình thang ABCD có EG//AB//CD
nên AE/AD=BG/BC
Xét ΔADC có OE//DC
nên OE/DC=AE/AD
Xét ΔBDC có OG//DC
nên OG/DC=BG/BC
=>OE/DC=OG/DC
=>OE=OG