Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (I) có
ΔADH nội tiếp
AH là đường kính
Do đó: ΔADH vuông tại D
Xét (K) có
ΔHEB nội tiếp
HBlà đườg kính
=>ΔHEB vuông tại E
Xét (O) có
ΔMAB nội tiếp
AB là đường kính
=>ΔMAB vuông tại M
Xét tứ giác MDHE có
góc MDH=góc MEH=góc DME=90 độ
nên MDHE là hình chữ nhật
b: Xét ΔMHA vuông tại H có HD là đường cao
nên MD*MA=MH^2
Xét ΔMHB vuôg tại H có HElà đường cao
nên ME*MB=MH^2
=>ME*MB=MD*MA
c: góc EDI=góc EDH+góc IDH
=góc HMB+góc IHA
=góc HMB+góc HBM=90 độ
=>DE là tiếp tuyến của (I)
góc DEK=góc DEH+góc KEH
=góc AMH+góc KHE
=góc AMH+góc HAM=90 độ
=>DE là tiếp tuyến của (K)
a) vì AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC
\(\Rightarrow OD\perp BC\)
Mà \(DE\perp OD\)
\(\Rightarrow BC//DE\)
b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)
\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)
suy ra tứ giác ACIK nội tiếp
c) OD cắt BC tại H
Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)
Xét \(\Delta OHC\)vuông tại H có :
\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{HOC}=60^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widebat{BC}=120^o\)
P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha.