Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`
`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`
`F(x)=6x^4+6x^3-5x-11`
`b,`
`K(x)=F(x)+G(x)`
`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`
`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`
`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`
`K(x)=12x^4+12x^3-x^2-10x-38`
`c,`
`H(x)=F(x)-G(x)`
`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`
`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`
`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`
`H(x)=x^2+16`
Đặt `x^2+16=0`
Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)
`->` Đa thức `H(x)` vô nghiệm.
Đặt Q(x) = 0
=> x2 + 5x - 3 = 0
=> x2 + 5x = 3
=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)
vì x^2 >hoặc= 0 (với mọi giá trị của x)
Suy ra x^2-3x+12 > 0 (với mọi x)
Suy ra x^2-3x+12 khác o
Suy ra x^2-3x+12 vô nghiệm
Tham khảo:x^2-5x+20
ta có: x^2-5x+20=x^2-2/5x-2/5x+25/4-25/4+20
=(x^2-2/5x)-(2/5x-25/4)-25/4+80/4
=x(x-2/5)-2/5(x-2/5)+55/4
=(x-2/5)(x-2/5)+55/4
=(x-2/5)^2+55/4
Ta có: (x-2/5)^2>=0 Với x thuộc R
(x-2/5)^2+55/4>=55/4>0
=>Đa thức không có nghiệm
Ta có \(x^4\ge0\) ( lũy thừa bậc chẵn)
\(3x^2\ge0\) ( vì x2 là lũy thừa bậc chẵn nên lớn hơn 0 )
=> A(x) > 0
Vậy đa thức A(x) ko có nghiệm
Ta có : \(x^4>=0\);\(3x^2>=0\); \(1>0\)
=> \(x^4+3x^2+1>0\)
=> PTVN