K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2015

ta có :\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c của dãy t/s = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}->\frac{a}{c}=\frac{a+c}{b+d}=\frac{a}{a+b}=\frac{c}{c+d}\left(dpcm\right)\)

11 tháng 6 2016

a) Gọi giá trị chung của các tỉ số là k, ta có :

\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\)\(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a+b}{a}=\frac{k\times b+b}{k\times b}=\frac{b\times\left(k+1\right)}{k\times b}=\frac{k+1}{k}\)       ( a, k.b, k\(\ne\)0 )                                             (1)

\(\frac{c+d}{c}=\frac{k\times d+d}{k\times d}=\frac{d\times\left(k+1\right)}{k\times d}=\frac{k+1}{k}\)       ( c, k.d, k \(\ne\)0 )                                             (2)

Từ (1) và (2)\(\Rightarrow\) \(\frac{a+b}{a}=\frac{c+d}{c}\)

                                                                                              

27 tháng 12 2016

Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d

=>a+b/a-b=c+d=c-d

27 tháng 12 2016

Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)

Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\) 

\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)

Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

20 tháng 9 2015

Ta có a/b = c/d suy ra a/b = b/d

Áp dụng tính chất dãy tính chất tỉ số = nhau

a/c = b/d = a + b / c + d = a-b/c-d suy ra a+b / c-d = c+d/c-d.

**** MÌNH NHA BẠN.

26 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dya4 tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\left(đpcm\right)\)

ab =cd 

⇒ac =bd 

Áp dụng tính chất dãy tỉ số bằng nhau:

ac =bd =a−bc−d 

⇒ac =a−bc−d ⇒a−ba =c−dc (đpcm)