K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Để xác định số cách xếp ta phải làm theo các công đoạn như sau.

  1. Chọn 3 nam từ 6 nam. Có  cách.

  2. Chọn 2 nữ từ 5 nữ. Có  cách.

3. Xếp 5 bạn đã chọn vào bàn đầu theo những thứ tự khác nhau. có 5! Cách.

Từ đó ta có số cách xếp là  

Chọn C.

5 tháng 9 2019

+ Số cách xếp 8 học sinh nói trên ngồi xung quanh một bạn tròn là 7 !.

+ Đếm số cách xếp 8 học sinh ngồi xung quanh một bàn tròn mà hai học sinh Hải và Liên ngồi cạnh nhau:

Trước tiên, số cách xếp 7 học sinh (trừ bạn Hải sẽ xếp sau) ngồi xung quanh một bàn tròn là 6 !

Khi đó có 2 cách xếp chỗ ngồi cho bạn Hải (ở bên trái hoặc bên phải bạn Liên).

Theo quy tắc nhân, sẽ có 6!.2 cách xếp 8 bạn ngồi xung quanh một bàn tròn mà hai bạn Hải và Liên ngồi cạnh nhau.

Vậy số cách xếp chỗ ngồi sao cho Hải và Liên không ngồi cạnh nhau là: 7! – 6!.2 =6!.5.

Chọn C.

25 tháng 1 2023

 👍🏻 Cách 1. 
  Như trên hình là số thứ tự các ghế
 ❤️ Trường hợp 1
 Ghế có số lẻ là ghế các bạn nữ thì 
  G1 có 4 lựa chọn
  G3 có 3 lựa chọn
 G5 có 2 lựa chọn
 G1 có 1 lựa chọn
 Các ghế chẵn là nam
   G2 có 4 lựa chọn 
   G4 có 3 lựa chọn
   G6 có 2 lựa chọn
   G8 có 1 lựa chọn 
==> Với trường hợp 1 sẽ có 
    (4x3x2x1)x(4x3x2x1)=576 cách xếp
  ❤️ Trường hợp 2 
   Các ghế lẻ là nam và các ghế chẵn là nữ thì tương tự ta cũng có 576 cách xếp 
 => Với cách 1 ta có 
   2x576=1152 cách xếp

 loading...  
 

 

25 tháng 1 2023

Cách 2 xếp 2 bàn ngược lại với cách 1 thì ta cũng sẽ có 
  1152 cách xếp
 => Với 2 cách xếp + 4 trường hợp ta có 
  2x1152=2304 cách xếp

Số cách xếp là:

\(\left(C^2_4\cdot C^2_4-2!\cdot2!\cdot2!\right)\cdot2=56\left(cách\right)\)

24 tháng 8 2016

xếp ngẫu nhiên 8 bạn học sinh vào 4 bàn có 8! cách 40320 cách 

=> \(n\left(\Omega\right)=40320\) 

Gọi A:" có đúng 2 bàn mà trong đó mỗi bàn gồm 1 nam và 1 nữ " 

=> \(n\left(A\right)=C^1_4.C^1_4..4.C^1_3.C^1_3.3.C^2_2.2.C^2_2.1=3456\) cách

=> P(A)= 3456/40320 =3/35 

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
18 tháng 5 2017

Số cách xếp quanh bàn tròn là \(n\left(\Omega\right)=9!\)

Kí hiệu A là biến cố : "Nam nữ ngồi xen kẽ nhau"

Ta có :

\(n\left(A\right)=4!5!\)\(P\left(A\right)=\dfrac{4!5!}{9!}\approx0,008\)

20 tháng 2 2017

Vì giữa 3 bạn nữ có 2 vị trí trống, để xếp thỏa yêu cầu phải có dạng   A a B b C ¯  . Trong đó A, B, C là 3 bạn nữ, a, b là 2 bạn nam.

Bước 1: Chọn 2 bạn nam trong 3 bạn nam, có C 5 2  cách.

Bước 2: Gọi nhóm A a B b C ¯   là X. Xếp X và 3 bạn nam còn lại thành 1 hàng ngang có 4! cách.

Bước 2: Ứng với mỗi cách xếp ở bước 1, có 2! cách xếp các bạn nam trong X và 3! cách xếp các bạn nữ trong X.

Theo quy tắc nhân có   C 4 2 . 4 ! . 3 ! . 2 ! = 2880  cách xếp thỏa yêu cầu.

Chọn  C.

1 tháng 2 2018

b. đánh số ghế theo thứ tự 1,2,3,4. Hai bạn nam ngồi cạnh nhau ở vị trí ( 1 và 2) hoặc (2 và 3) hoặc (3 và 4). Nếu hai bạn nam đổi chỗ cho nhau( giữ nguyên chỗ hai bạn nữ) thì Ta có một cách xếp mới . vì vậy cần chọn phương án D