Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối đường chéo AC.
Trong ∆ ABC ta có:
E là trung điểm của AB (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của ∆ ABC
⇒EF//AC và EF = 1/2 AC
(tính chất đường trung hình tam giác) (1)
Trong ∆ ADC ta có:
H là trung điểm của AD (gt)
G là trung điểm của DC (gt)
Nên HG là đường trung bình của ∆ ADC
⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
- Vì ta nối DB thì sẽ có HE và GF là đường tb của tam giác ADB và DCB => GF//HE vì cùng // với DB và bằng 1/2 DB (1)
- Nối AC thì sẽ có HG và EF là đường tb của tam giác DCA và BAC => EF//HG vì cùng //AC và bằng 1/2 AC (2)
Từ (1) và (2) => tứ giác HEFG là HBH (có các cặp cạnh // và bằng nhau từng đôi một)
=>Hình đó là hình bình hành
Trả lời :
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = \(\frac{AC}{2}\)
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = \(\frac{AC}{2}\).
+ Ta có:
EF // AC, HG//AC ⇒ EF // HG.
EF = \(\frac{AC}{2}\); HG = \(\frac{AC}{2}\) ⇒ EF = HG
⇒ Tứ giác EFGH là hình bình hành.
Xét \(\Delta ABC\) có:
E là trung điểm AB (gt)
F là trung điểm AC (gt)
=> EF là đường trung bình \(\Delta ABC\) (ĐN đường TB \(\Delta\))
=> EF // AC, \(EF=\dfrac{AC}{2}\) (tính chất đường TB \(\Delta\))
Xét \(\Delta ADC\) có:
H là trung điểm AD
G là trung điểm DC
=> HG là đường trung bình \(\Delta ADC\) (ĐN đường TB \(\Delta\))
=> HG // AC, \(HG=\dfrac{BC}{2}\) (tính chất đường TB \(\Delta\))
Ta có: EF // AC, HG // AC
\(EF=\dfrac{AC}{2},HG=\dfrac{AC}{2}\)
=> EF // HG, EF = HG
Xét tứ giác EFGH có:
EF // HG
EF = HG
=> EFGH là hình bình hành (dhnb)
Tứ giác EFGH là hình bình hành.
Cách 1: EB = EA, FB = FC (gt)
nên EF là đường trung bình của ∆ABC.
Do đó EF // AC
Tương tự HG là đường trung bình của ∆ACD.
Do đó HG // AC
Suy ra EF // HG (1)
Tương tự EH // FG (2)
Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).
Cách 2: EF là đường trung bình của ∆ABC nên EF = 1212AC.
HG là đường trung bình của ∆ACD nên HG = 1212AC.
Suy ra EF = HG
Lại có EF // HG ( chứng minh trên)
Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3).
Ta có EB = EA, FB = FC (gt)
⇒ EF là đường trung bình của ΔABC
⇒EF // AC và EF = AC/2 (1)
HD = HA, GD = GC
⇒ HG là đường trung bình của ΔADC
⇒ HG // AC và HG = AC/2 (2)
Từ (1) và (2) suy ra EF // HG và EF = HG
⇒ Tứ giác EFGH là hình bình hành (*)
EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.
Mà EF // AC, AC ⊥ BD
⇒ EH ⊥ EF ⇒ Ê = 90º (**)
Từ (*) và (**) suy ra EFGH là hình chữ nhật.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = AC/2
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = AC/2.
+ Ta có:
EF //AC, HG//AC ⇒ EF // HG.
EF = AC/2; HG = AC/2 ⇒ EF = HG
⇒ tứ giác EFGH là hình bình hành.