K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có

góc HCD=góc CDB

=>ΔHCD đồng dạng với ΔCDB

=>HC/CD=CD/DB

=>CD^2=HC*DB

30 tháng 3 2023

xét ΔABC và ΔDBN ta có

\(\widehat{B}\)  chung

\(\widehat{BAC}=\widehat{BDN}=90^o\)

=>ΔABC∼ΔDBN(g.g)

=>\(\dfrac{BA}{BD}=\dfrac{BC}{BN}\)

=>\(BA.BN=BD.BC\)

 

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm

30 tháng 4 2019

Xét \(\Delta ABC\) có : \(\widehat{BAC}+\widehat{B_2}+\widehat{ACB}=180^0\)\(\Rightarrow\)\(\widehat{B_2}+\widehat{ACB}=90^0\)

Ta có :  \(\widehat{DBC}=\widehat{B_1}+\widehat{B_2}\)\(\Rightarrow\)\(\widehat{B_1}+\widehat{B_2}=90^0\)

\(\Rightarrow\)\(\widehat{B_1}=\widehat{ACB}\)

Xét  \(\Delta ABC\) Và  \(\Delta DAB\)có :

         \(\widehat{BAC}=\widehat{A\text{D}B}\) ( cùng = 900 )

           \(\widehat{ACB}=\widehat{B_1}\)

\(\Rightarrow\) \(\Delta ABC\) \(~\) \(\Delta DAB\) ( g - g )

b) Áp dụng định lí Py - ta - go

vào \(\Delta ABC\)vuông tại A

BC2 = AB2 + AC2

BC2 = 152 + 202

BC2 = 225 +  400

BC2 = 625

BC = 25 ( cm )

Do \(\Delta ABC\)\(~\)\(\Delta DAB\)\(\Rightarrow\) \(\frac{AB}{BC}=\frac{A\text{D}}{AB}\)\(\Rightarrow\)\(\frac{15}{20}=\frac{A\text{D}}{15}\)\(\Rightarrow\)\(A\text{D}=\frac{15.15}{25}=9\)( cm )

Áp dụng định lí Py - Ta - Go vào \(\Delta DAB\) vuông tại A

AB2 = BD2 + AD2

152 = BD2 + 92

BD2 = 225 - 81

BD2 = 144

BD = 12 ( cm )

c) Do AD //  BC \(\Rightarrow\)\(\frac{A\text{D}}{BC}=\frac{AI}{BI}\)\(\Rightarrow\)\(\frac{9}{25}=\frac{AI}{BI}\)

\(\Rightarrow\)\(\frac{9}{25}=\frac{AI}{AB-AI}\)\(\Rightarrow\)\(\frac{9}{25}=\frac{AI}{15-AI}\)\(\Rightarrow\)\(135-9AI=25AI\)\(\Rightarrow135=34AI\)\(\Rightarrow\)\(AI=\frac{135}{34}\)

Ta có : \(S_{\Delta AIC}=\frac{135}{34}.\frac{1}{2}.20=\frac{675}{17}\) ( cm2 )

\(S_{\Delta ABC}=\frac{1}{2}.15.20=150\) ( cm2 )

\(\Rightarrow\)\(S_{\Delta BIC}=S_{\Delta ABC}-S_{\Delta AIC}\)\(=150-\frac{675}{34}=\frac{1875}{17}\) ( cm2 )

30 tháng 4 2019

B C A I D y x

Do AD // BC 

Mà DB\(\perp\)BC

\(\Rightarrow\) AD \(\perp\) DB