Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ biết làm câu a thôi nhé bạn 🙂🙂🙂.
a) Chứng minh OA vuông góc BC và OH.OA = R2
Xét (O) có:
✱ OB=OC (=R)
✱ AB=AC (tính chất 2 tiếp tuyến cắt nhau)
⇒ O,A thuộc đường trung trực của BC.
⇒ OA là đường trung trực của BC.
⇒ OA ⊥ BC tại đường trung điểm H của BC.
Xét ΔABO vuông tại B có đường cao BH (cmt) có:
OB2=OH.OA (hệ thức lượng) (1)
Mà OB=R (cmt) ⇒ OB2=R2 (2)
Từ (1) và (2) ⇒ OH.OA=R2
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
\(a,\) Vì AB=AC (tc 2 tiếp tuyến) nên A∈ trung trực BC
Vì OB=OC=R nên O∈ trung trực BC
Do đó OA là trung trực BC
Do đó OA⊥BC tại H
Áp dụng HTL tam giác OAC vuông C: \(OH\cdot OA=OC^2=R^2\)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của CB(2)
Từ (1) và (2) suy ra OA⊥BC
a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.
\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)
Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.
Vậy \(OH\perp BC\)
b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có: \(OH.OA=OC^2=R^2\)
Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)
c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.
Vậy thì \(MN\perp BA\)
Lại có \(BD\perp BA\) nên BD // MN.
d) Ta chứng minh \(OF\perp AD\)
Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)
\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\) (1)
Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)
Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)
\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)
Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)
Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)
\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)
\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)
\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)
Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.
Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)
\(\Rightarrow BE^2=\frac{20R^2}{9}\)
Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:
\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)
\(\Rightarrow DE=\frac{4R}{3}\)
\(\Rightarrow KE=\frac{2R}{3}\)
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên AO là trung trực của BC
=>AO vuông góc BC
góc EBC=1/2*180=90 độ
=>EB vuông góc BC
=>AO//EB
b: Xét ΔMAD và ΔMBA co
góc AMD chung
góc MDA=góc MAB
=>ΔMAD đồng dạng với ΔMBA