K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O 

=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\)  => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)

Xét từ giác AMON có :

AMO + ANO = 90 + 90 = 180 

Mà 2 góc này ở vị try đối diện nhau 

=> Tứ giác AMON nội tiếp < đpcm>

8 tháng 3 2022

a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm 

=> ^AMO = ^ANO = 900

mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R 

Vậy OA là đường trung trực đoạn MN => OA vuông MN 

Xét tứ giác AMON có 

^AMO + ^ANO = 1800

mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM có 

^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g)

\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)

c, Xét tam giác OMA vuông tại M, đường cao MH 

Ta có \(AM^2=AH.AO\)( hệ thức lượng ) 

=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)

Xét tam giác ABH và tam giác AOC có 

^A _ chung 

\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( góc ngoài đỉnh B )

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

d, Ta có BHOC nt 1 đường tròn (cmc) 

=> ^OHC = ^OBC (góc nt chắc cung CO) 

=> ^AHB = ^ACO (góc ngoài đỉnh H) 

mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O

=> ^OHC = ^AHB 

mà ^CHN = 900 - ^OHC 

^NHB = 900 - ^AHB 

=> ^CHN = ^NHB 

=> HN là phân giác của ^BHC 

26 tháng 3 2022

a, Ta có AM ; AN lần lượt là tiếp tuyến (O) 

=> ^AMO = ^ANO = 900

Xét tứ giác AMON có ^AMO + ^ANO = 1800 

mà 2 góc này đối 

Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM ta có 

^A _ chung ; ^AMB = ^ACM ( cùng chắn BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g) 

c, Ta có AM = AN ( tc tiếp tuyến cắt nhau ) 

ON = OM = R => OA là đường trung trực đoạn MN 

Xét tam giác AMO vuông tại M, đường cao MH 

=> AM^2 = AH.AO 

=> AB . AC = AH . AO => AB/AO = AH/AC 

Xét tam giác ABH và tam giác AOC có

^A _ chung ; AB/AO = AH/AC (cmt) 

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B ) 

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

 

8 tháng 5 2020

ajnomoto

23 tháng 9 2017

ai giúp với

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)