K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2023

Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.

Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)

Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.

Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0

- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số

- TH2: 2 chữ số cuối không chứa chữ số 0:

+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách

+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách

\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số

Cộng 2 trường hợp lại

NV
18 tháng 3 2023

TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5

Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách

TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8

Chọn chữ số còn lại có 6 cách

Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách

\(\Rightarrow3.6.4=72\) số

Tổng: \(42+72=114\) số

Các bộ số có thể là (0;3;6); (0;1;5); (0;4;8); (0;1;8); (0;4;5); (1;3;5); (1;3;8); (1;5;6); (3;4;5); (3;4;8); (4;6;8)

Với các bộ (0;3;6); (0;1;5); (0;4;8); (0;1;8); (0;4;5) thì có thể lập được:

\(2\cdot2\cdot1\cdot5=20\left(số\right)\)

Với các bộ còn lại thì lập được 3!*6=6*6=36 số

=>Có 20+36=56 số

NV
11 tháng 3 2023

TH1: chữ số tận cùng là 0

Chọn 1 chữ số khác 0 và 2: có 6 cách

Hoán vị 2 chữ số hàng trăm và chục: \(2!\) cách

\(\Rightarrow6.2=12\) số

TH2: chữ số tận cùng là 5

Chọn 1 chữ số khác 2 và 5: 

- Nếu chữ số đó là 0: có 1 số \(205\) thỏa mãn

- Nếu chữ số đó khác 0: có 5 cách chọn, hoán vị nó với 2 có 2 cách \(\Rightarrow2.5=10\) số

Tổng cộng: \(12+1+10=23\) số

NV
12 tháng 3 2023

Lập số có 10 chữ số sao cho chữ số 3 xuất hiện 3 lần và các chữ số khác xuất hiện 1 lần: có \(\dfrac{10!}{3!}\) cách

Lập số có 10 chữ số sao cho số 3 xuất hiện 3 lần, các chữ số khác xuất hiện 1 lần và chữ số 0 đứng đầu: \(\dfrac{9!}{3!}\) cách

Vậy có: \(\dfrac{10!-9!}{3!}\) số thỏa mãn

\(\overline{abcdef}\)

c,d,e có thể lấy bộ ba (1;2;5); (1;3;4)

TH1: c,d,e lấy bộ ba (1;2;5)

a có 6 cách

b có 5 cách

f có 4 cách

c,d,e có 3!=6 cách

=>Có 6*6*5*4=36*20=720(số)

TH2: c,d,e lấy bộ ba 1;3;4

a có 6 cách

b có 5 cách

f có 4 cách

c,d,e có 3!=6 cách

=>Có 6*6*5*4=36*20=720(số)

=>Có 720+720=1440 số

SỐ cách lập là;

7*7*6*5*4*3*2*1=35280