K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Gọi    là số cần lập với   đôi một khác nhau .

Vì x là số lẻ nên d có 3 cách chọn.

Với mỗi cách chọn d ta có a A \ {0;d} nên a có  cách chọn

Với mỗi cách chọn a;d ta có    cách chọn bc

Theo quy tắc nhân ta có:  số thỏa yêu cầu bài toán

Chọn A.

8 tháng 12 2017

26 tháng 11 2016

gọi số cần tìm là abcde

a có 6k/năng

b có 6 k/n

c có 5

d có 4

e có 2

=> co 6.6.5.4.2=1440 số

16 tháng 9 2018

gọi \(\overline{a_1a_2a_3a_4a_5}\) là số tự nhiên cần tìm

Xét \(a_1=5\)

chọn \(\overline{a_2a_3a_4a_5}\) : \(A_6^4\) cách

\(\Rightarrow\) 360 số

Xét \(a_1\ne5\) \(\Rightarrow a_1\) có 5 cách

Đặt chữ số 5 có 4 cách

chọn 3 vị trí còn lại \(A_5^3\)

\(\Rightarrow\) có 5.4.\(A_5^3\)= 1200 số

vậy có 1200+360 = 1560 số

4 tháng 12 2019

Đáp án B    

Số cần lập là  a b c d e f , ta có a + b + c – 1 = d + e + f <=> 20 = 2(d + e + f) <=> d + e + f = 10

Với mỗi  f ∈ { 1 ; 3 ; 5 }  => d, e có 4 cách chọn, suy ra  a b c d e f  4.3! = 24 cách chọn

Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài.

28 tháng 12 2020

hơn 1

hihihihi

2 tháng 1 2021

TH1: Số cần lập có dạng \(520\overline{ab}\)

Chọn a;b có \(A^2_4\) cách

TH2 : Số cần lập có dạng : \(50\overline{abc}\)

Chọn a;b;c có \(A^3_5\) cách

TH3: Số cần lập có dạng : \(\overline{abcde}\left(a\ne5\right)\)

Chọn a: 2 cách 

Chọn b;c;d;e có \(A^4_6\) cách

 

Vậy lập được tất cả \(A^2_4+A^3_5+2A^4_6=792\) số

27 tháng 5 2017