Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số
Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số
Do đó có 144 - 36 = 108 thỏa mãn.
Đáp án A
Gọi a 1 a 2 a 3 a 4 ¯ là số lẻ có 4 chữ số khác nhau, với a 1 , a 2 , a 3 , a 4 ∈ { 0 , 1 , 2 , 3 , 5 , 8 } => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.
Gọi b 1 b 2 b 3 b 4 là số lẻ có 4 chữ số khác nhau, với b 1 , b 2 , b 3 , b 4 ∈ 0 ; 1 ; 2 ; 5 ; 8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.
Đáp án A
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144-18= 126
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Chọn B.
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯ (a có thể bằng 0), đồng thời hai chữ số lẻ đứng liền nhau là
(để ý: có 4 cách xếp sao cho hai chữ số lẻ đứng liền nhau là
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ , đồng thời hai chữ số lẻ đứng liền nhau là
(để ý: có 3 cách xếp sao cho hai chữ số lẻ đứng liền nhau là
Suy ra, số các số tự nhiên thỏa đề ra là
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}.
Ta có,
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯ (a có thể bằng 0) là .
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ là
Suy ra, số các số tự nhiên thỏa đề ra là .
Ý tưởng phát triển câu 39: thêm ràng buộc về thứ tự sắp xếp cho số tự nhiên lập được.
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5
• Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7} ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm {0;2;4;6} ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a1 = 0
• Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7} ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm {0;2;4;6} ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 . 5 ! - C 4 2 . C 3 2 . 4 ! = 2448 số
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn
chữ số hàng nghìn có 4 cách chọn
chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là
2.3.2.3 = 36
Vậy có 144 - 36 = 108 số