Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5 ¯
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a 1 = 0
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448 số
Đáp án B.
Số cần lập có dạng a b c d ¯ trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; trong đó d = {0;5}.
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 5 khi đó a,b,c có 5.5.4 a ≠ 0 cách chọn và sắp xếp.
Theo quy tắc cộng có A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán.
Chọn đáp án A.
Xếp một hàng thành 6 ô đánh số từ 1 đến 6 như hình bên: 123456.
Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.
Ta tìm số các chữ số mà hai chữ số 0 và 5 đứng cạnh nhau:
· Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.
· Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.
Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.
Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.
Đáp án C
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126
Chọn C
Gọi số cần tìm là a = a 1 a 2 a 3 a 4 a 5 ¯ a i ≠ 0 Do a ⋮ 3 nên a 1 + a 2 + a 3 + a 4 + a 5 ⋮ 3
Nếu a 1 + a 2 + a 3 + a 4 ⋮ thì a 5 = 0 hoặc a 5 = 3
Nếu a 1 + a 2 + a 3 + a 4 chia 3 dư 1 thì a 5 = 2 hoặc a 5 = 5 .
Nếu a 1 + a 2 + a 3 + a 4 chia 3 dư 2 thì a 5 = 1 hoặc a 5 = 4 .
Như vậy, từ một số có 4 chữ số a 1 a 2 a 3 a 4 (các số được lấy từ tập A) sẽ tạo được 2 số tự nhiên có 5 chữ số thỏa mãn yêu cầu bài toán.
Dễ thấy từ các chữ số của tập A có thể lập được 5.6.6.6 = 1080 số tự nhiên có 4 chữ số.
Do đó từ các chữ số của tập A sẽ lập được 2.1080 = 2160 số chia hết cho 3 có 5 chữ số.