K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Đáp án B

Phương pháp: Phương trình giao thoa sóng trong giao thoa sóng hai nguồn cùng pha:

u M = 2 acos π ( d 2 - d 1 ) λ cos [ ωt - π ( d 2 + d 1 ) λ ]

Cách giải:

Bước sóng: λ = 2cm

Phương trình sóng tại M:

u M = 2 acos π ( MA - MB ) λ cos [ ωt - π ( MA + MB ) λ ]

X là điểm dao động với biên độ cực đại và ngược pha với M.

Phương trình sóng tại X:

u X = 2 acos π ( XA - XB ) λ cos [ ωt - π ( XA + XB ) λ ]

Vì X và M thuộc elip => M  + MB = X  + XB

=> uM và uX chỉ khác nhau về:

cos π ( MA - MB ) λ ; cos π ( XA - XB ) λ

Vì M thuộc trung trực của AB

⇒ cos π ( MA - MB ) λ = 1

X ngược pha với M

⇔ cos π ( XA - XB ) λ = - 1 ⇔ X A - X B = ( 2 k + 1 ) λ

- AB ≤ ( 2 k + 1 ) λ ≤ AB ⇔ - 19 ≤ ( 2 k + 1 ) λ ≤ 19 ⇒ - 5 , 25 ≤ k ≤ 4 , 25

=> Có 10 điểm dao động với biên độ cực đại và ngược pha với M trên đoạn  B

=> Trên elip có 20 điểm dao động với biên độ cực đại và ngược pha với M.

1 tháng 3 2017

4 tháng 1 2017

Đáp án B

Phương pháp: Sử dụng lí thuyết về giao thoa sóng hai nguồn cùng pha

Cách giải:

Bước sóng: λ = vT = 5cm

Phương trình sóng giao thoa tại M:  u M   =   2 a . cos π ( d 2 - d 1 ) λ cos 20 π t - π ( d 2 + d 1 ) λ

+ M dao động với biên độ cực đại nên:  d 2   -   d 1 = m λ   =   5 m < A B ⇒ m < 3 , 6

  M dao động cùng pha với nguồn nên:

           π ( d 2 + d 1 ) λ = 2 n π   ⇒ d 2 + d 1   =   2 n λ   =   10 n > A B   ⇒ n > 1 , 8

Từ  (1) và (2) ⇒ d 1   =   2 n λ   -   m λ 2 = ( 2 n - m ) . 2 , 5  

M gần A nhất nên d1 nhỏ nhất   ⇔ n m i n   =   2 m m a x   = 3 ⇒ d l   m i n   =   ( 2 . 2 - 3 ) . 2 , 5 = 2 , 5 c m

1 tháng 1 2019

Đáp án C

+ Bước sóng: λ = v/f = 0,6/40 = 1,5cm

+ Số cực đại giao thoa trên đoạn thẳng nối hai nguồn bằng số giá trị k nguyên thoả mãn:

- A B λ < k < A B λ   ⇔   -   10 1 , 5 < k < 10 1 , 5   ⇔ - 6 , 67 < k < 6 , 67   ⇒ k   =   0 ;   ± 1 ,   ± 2 , . . . . , ± 6

+ Ta có: S A M B   =   1 2 A B . M B   ⇒ ( S A M B ) m i n   ⇔ ( M B ) m i n   ⇔  M thuộc cực đại ứng với kmax => d1 – d2 = 6λ = 9cm.

+ Áp dụng định lí Pi – ta – go trong tam giác vuông AMB có:

A B 2 + d 2 2   =   d 1 2   ⇔ 10 2 + d 2 2   =   ( d 2 + 9 ) 2 ⇒ d 2   =   19 18 c m   =   M B   ⇒ S A M B   =   1 2 A B . M B = 1 2 . 10 . 19 18 =   5 , 28 c m 2

V
violet
Giáo viên
4 tháng 5 2016

A B M 100cm

Gọi $MB=x$ .

Do M dao động cực tiểu nên ta có: $\Delta d=\sqrt{x^2+100^2}-x=k\lambda $ với $\lambda =v.T=30cm$.

Bình phương ta được :$100^2+x^2=(x+30k)^2\Leftrightarrow x=\dfrac{100^2-900k^2}{60k}$

Điều kiện :$x\geq 0\Leftrightarrow k\leq \dfrac{10}{3}$(chỉ xét với k dương, k âm tương tự).

Hiệu khoảng cách tới 2 nguồn nhỏ nhất khi điểm sáng đó trên vân bậc cao nhất tức là: $k=3\Rightarrow x=\dfrac{95}{9}cm$

Chọn A.

24 tháng 5 2017

28 tháng 7 2017

7 tháng 10 2019

Chọn D

+Biên độ sóng tại M:

A M = 2 a cos π d 1 - d 2 λ = 2 a cos π d 1 - d 2 v f =0 cm

23 tháng 9 2015

M A B

Giữa M và đường trung trực của AB có hai đường cực đại khác tức là M nằm ở đường cực đại thứ k = 3. (Vì đường trung trực của AB với AB cùng pha là cực đại với k = 0)

=> \(AM - BM = 3 \lambda\)

=> \(20 - 15.5 = 3 \lambda \)

=>\(3 \frac{v}{f} = 4,5cm\)

=>\(f = \frac{3v}{4,5} = 20Hz.\)

Chọn đáp án. A

28 tháng 6 2016

Hai nguồn dao động ngược pha thì tại M dao động cực đại \(\Rightarrow d_2-d_1=(k+0,5)\lambda\)

Giữa M và trung trực AB có duy nhất 1 cực đại \(\Rightarrow k =1\)

\(\Rightarrow d_2-d_1=1,5\lambda\)

\(\Rightarrow \lambda=4/3(cm)\)

\(\Rightarrow v = \lambda.f=\dfrac{56}{3}(cm/s)\)

30 tháng 6 2016

Dạ e có thắc mắc là ở bài giảng thì có nói :

Đk để tại cực đại là d2- d1 = K .lam da

Nhưng ở cmt của bạn lại là (k +1/2) ?????