K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2020

\(\overrightarrow{AB}=\left(6;-8\right)=2\left(3;-4\right)\)

Gọi N là trung điểm AB \(\Rightarrow N\left(1;-1\right)\)

Phương trình trung trực d' của AB:

\(3\left(x-1\right)-4\left(y+1\right)=0\Leftrightarrow3x-4y-7=0\)

\(\Delta ABC\) cân tại M \(\Rightarrow\) M nằm trên trung trực d' của AB

Thay tọa độ K vào pt d' thấy thỏa mãn \(\Rightarrow K\in d'\)

\(\left\{{}\begin{matrix}M\in d'\\K\in d'\end{matrix}\right.\) \(\Rightarrow\) d' trùng \(d_2\) (hai đường thẳng cùng chứa 2 điểm pb)

\(\Rightarrow\) Phương trình \(d_2\)\(3x-4y-7=0\)

Thật kì diệu, chẳng cần đến dữ kiện pt d luôn :D:D:D:D

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0