Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E và
F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .
2). Giả sử G là giao điểm của BE và CF.
Ta có G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B , và F B ∥ A D ta có G ∈ A D .
3). Chứng minh B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.
AC vuông góc BH nên nhận (1;-1) là 1 vtpt
Phương trình AC:
\(1\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow x-y=0\)
A thuộc AC và d nên tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}x-y=0\\x-4y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)
M là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_A=\dfrac{8}{3}\\y_C=2y_M-y_A=\dfrac{8}{3}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)
BC song song d nên nhận (1;-4) là 1 vtpt
Phương trình BC:
\(1\left(x-\dfrac{8}{3}\right)-4\left(y-\dfrac{8}{3}\right)=0\Leftrightarrow x-4y+8=0\)
B là giao điểm của BC và BH nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x-4y+8=0\\x+y+3=0\end{matrix}\right.\) \(\Rightarrow B\left(-4;1\right)\)
\(\Rightarrow\overrightarrow{AB}=...\Rightarrow\) phương trình đường thẳng AB
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)
Hướng dẫn, hơi dài nên làm biếng giải chi tiết:
Kéo dài KE cắt AB tại F
BK là phân giác góc B nên hai tam giác vuông BKH và BKF bằng nhau (ch-gn)
\(\Rightarrow\widehat{BKF}=\widehat{BKE}\) \(\Rightarrow\widehat{BKA}=\widehat{BKE}\)
\(\Rightarrow\Delta BKA=\Delta BKE\left(g.c.g\right)\)
\(\Rightarrow AK=EK\)
Lại có \(\widehat{BKF}=\widehat{BDA}\) (đồng vị) \(\Rightarrow\widehat{BDA}=\widehat{BKH}=\widehat{AKD}\)
\(\Rightarrow\Delta AKD\) cân tại A hay \(AK=AD\)
\(\Rightarrow AD=EK\Rightarrow ADEK\) là hình bình hành hay DE song song AK (hay AH)
BC vuông góc AH nên nhận (3;1) là 1 vtpt và đi qua E(3;-7) \(\Rightarrow\) pt BC
ED đi qua E(3;-7) và song song AH nên nhận (1;-3) là 1 vtpt \(\Rightarrow\) pt DE
\(\Rightarrow\) Tọa độ D (giao của DE và \(\Delta\))
ADEK là hbh (theo cmt) và có 2 cạnh kề AK=AD nên ADEK là hình thoi
\(\Rightarrow AD=DE\)
Biết tọa độ D, E \(\Rightarrow\) độ dài DE
A thuộc AH nên tọa độ A có dạng: \(A\left(3a+16;a\right)\Rightarrow\overrightarrow{DA}=...\Rightarrow\left|\overrightarrow{DA}\right|=DE\)
\(\Rightarrow a\Rightarrow\) tọa độ A
\(\Rightarrow\) Phương trình AC (qua A và D)
\(\Rightarrow\) Phương trình AB (qua A và vuông góc AC)