Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đường thẳng y = ax+b song song với đường thẳng y = 3x +1 thì:
\(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Vì đường thẳng y = ax + b đi qua điểm M ( -1 ; 2 )
-a + b = 2
Thay a = 3 ta được b = 5
Vậy hàm số có dạng y = 3x+5
vì dths y=ax+b // với dt (d) => a=2
mà đths y=ax+b đi qua điểm B =>2=2.(-1)+b =>b=4
vì dths y=ax+b // với dt (d) => a=2
mà đths y=ax+b đi qua điểm B =>2=2.(-1)+b =>b=4
Vì (d)//y=2x+1 nên a=2
=>y=2x+b
Thay x=-1 và y=2 vào (d), ta được:
b-2=2
=>b=4
Vì (d)//y=x+2 nên a-2=1
hay a=3
Vậy: (d): y=x+b
Thay x=-2 và y=-1 vào (d), ta được:
b-2=-1
hay b=1
Ta có \(\left(d\right):y=ax+b\) song song với \(\left(d\right):y=3x-1\)
\(\Rightarrow a=3\) ta được phương trình \(y=3x+b\)
đường thẳng này cắt trục tung tại tung độ bằng 2
\(\Rightarrow\left(0;2\right)\)
\(\Rightarrow2=3.0+b\\ \Rightarrow b=2\)
Vì đường thẳng song song với y =3x +1 nên
\(a=3\) Vậy đường thẳng có dạng \(y=3x+b\)
Do đường thẳng đi qua điểm M nên :
\(2=3\times-1+b\Leftrightarrow b=5\)
Vậy \(\hept{\begin{cases}a=3\\b=5\end{cases}}\)