Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos2A+cos2B+cos2c+\dfrac{3}{2}\le0\)
\(\Leftrightarrow2cos\left(A+B\right)cos\left(A-B\right)+2cos^2C-1+\dfrac{3}{2}\le0\)
\(\Leftrightarrow-2cosC.cos\left(A-B\right)+2cos^2C+\dfrac{1}{2}\le0\)
\(\Leftrightarrow4cos^2C-4cosC.cos\left(A-B\right)+cos^2\left(A-B\right)-cos^2\left(A-B\right)+1\le0\)
\(\Leftrightarrow\left[2cosC-cos\left(A-B\right)\right]^2+sin^2\left(A-B\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2cosC-cos\left(A-B\right)=0\\sin\left(A-B\right)=0\end{matrix}\right.\)
\(\Rightarrow A=B=C\)
\(\Rightarrow\Delta ABC\) đều
B là đáp án đúng
Đề bài sai rồi bạn
Đường tròn (C) ngoại tiếp tam giác ABC thì hiển nhiên BC phải cắt (C), nhưng ở bài này BC không hề cắt (C) do khoảng cách từ tâm I đến BC lớn hơn R
Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm
Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.
Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số \(k=2\)
\(\Rightarrow\) Phương trình đường tròn ngoại tiếp tam giác:
\(\left(x-2\right)^2+\left(y+1\right)^2=25\)
(Tọa độ tâm nhân 2 lần và bán kính nhân 2 lần)