Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I(x, y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:
I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Gọi I( x; y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + 8 x + 16 = x 2 − 4 x + 4 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Bài 2:
Gọi I là tâm hình vuông ABCD
Ta có: I là trung điểm của AC
\(\Rightarrow\begin{cases}x_I=\frac{x_A+x_C}{2}=\frac{4}{2}=2\\y_I=\frac{y_A+y_C}{2}=\frac{2+5}{2}=\frac{7}{2}\end{cases}\)
\(\Rightarrow I\left(2;\frac{7}{2}\right)\)
Gọi: \(B=\left(x;y\right)\)
\(\overrightarrow{AB}=\left(x-1;y-2\right)\)
\(\overrightarrow{IB}=\left(x-2;y-\frac{7}{2}\right)\)
\(\overrightarrow{CB}=\left(x-3;y-5\right)\)
\(\overrightarrow{AC}=\left(2;3\right)\)
Ta có: \(\begin{cases}AB\text{_|_}CB\\IB\text{_|_}AC\end{cases}\Leftrightarrow\begin{cases}\overrightarrow{AB}.\overrightarrow{CB}=0\\\overrightarrow{IB}.\overrightarrow{AC}=0\end{cases}\Leftrightarrow\begin{cases}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y-5\right)=0\\2\left(x-2\right)+3\left(y-\frac{7}{2}\right)=0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left(\frac{25}{4}-\frac{3}{2}y\right)\left(\frac{17}{4}-\frac{3}{2}y\right)+\left(y-2\right)\left(y-5\right)=0\left(1\right)\\x=\frac{29}{4}-\frac{3}{2}y\left(2\right)\end{cases}\)
\(\left(1\right)\Leftrightarrow\frac{13}{4}y^2-\frac{91}{4}y+\frac{585}{16}=0\)
\(\Leftrightarrow\) TH1: \(y=\frac{9}{2}\Rightarrow x=\frac{1}{2}\)
TH2: \(y=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)
Vậy toạ độ hai đỉnh còn lại là \(\left(\frac{1}{2};\frac{9}{2}\right)\) và \(\left(\frac{7}{2};\frac{5}{2}\right)\)
Vì máy mình đánh ngoặc vuông không được nên ghi thành TH1;TH2. Chứ bạn dụng dấu ngoặc vuông cho đỡ nhé.
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
a)Theo bài ra => Tam giác ABC vuông cân ở A
M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm
=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)
Giả sử A có tọa độ (a;b)
=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)
b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC
Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC
=>phương trình đường thẳng BC:
1(x-1)-3(y+1)=0
hay x-3y-4=0
=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)
=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC
MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)
=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)
=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)
=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)
TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)
TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)
c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)
Phương trình đường tròn ngoại tiếp tam giác ABC:
(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)
Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.
A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2
⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1
4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3
⇔ a = − 5 2 b = 9 2
Chọn B.