Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi \(\overrightarrow{d}=(x,y)\). Theo bài ra ta có:
\(\left\{\begin{matrix} \overrightarrow{a}.\overrightarrow{d}=4\\ \overrightarrow{b}.\overrightarrow{d}=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2x+3y=4\\ 4x+y=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{7}\\ y=\frac{6}{7}\end{matrix}\right.\)
Vậy.......
\(m\overrightarrow{a}=m\left(-1;-2\right)=\left(-m;-2m\right)\)
\(n\overrightarrow{b}=n\left(1;-3\right)=\left(n;-3n\right)\)
\(\Rightarrow m\overrightarrow{a}+n\overrightarrow{b}=\left(-m+n;-2m-3n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-m+n=2\\-2m-3n=-4\end{matrix}\right.\) \(\Rightarrow m-n=-2\) (đảo dấu pt đầu là ra, ko cần giải hẳn ra m; n)
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
\(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{1\cdot\left(-1\right)+\left(-2\right)\cdot\left(-3\right)}{\sqrt{1^2+2^2}\cdot\sqrt{1^2+3^2}}=\dfrac{5}{\sqrt{5}\cdot\sqrt{10}}=\dfrac{5}{\sqrt{50}}=\dfrac{1}{\sqrt{2}}\)
Bổ sung đề: C(6;2)
a: vecto AD=(xD+3;yD-6)
vecto BD=(xD-1;yD+2)
vecto CD=(xD-6;yD-2)
Theo đề, ta có: \(\left\{{}\begin{matrix}x_D+3+2\left(x_D-1\right)-4\left(x_D-6\right)=0\\y_D-6+2\left(y_D+2\right)-4\left(y_D-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D+3+2x_D-2-4x_D+24=0\\y_D-6+2y_D+4-4y_D+8=0\end{matrix}\right.\)
=>D(25;6)